找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visual Reasoning with Diagrams; Amirouche Moktefi,Sun-Joo Shin Book 2013 Springer Basel 2013 diagrammatic reasoning.logic based on diagram

[復(fù)制鏈接]
樓主: Cyclone
31#
發(fā)表于 2025-3-26 23:11:07 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:10 | 只看該作者
On the Completeness of Spider Diagrams Augmented with Constants,ecific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsulating logical equivalence and logical consequence. We prove that the resulting logic is sound, complete and decidable.
33#
發(fā)表于 2025-3-27 05:24:09 | 只看該作者
What is a Logical Diagram?,ments in philosophy of mathematics and logic (e.g. Brown, Shin, Giaquinto) to take diagrams seriously—as more than a mere ‘heuristic aid’ to proof, but either proofs themselves, or irreducible components of such. However what exactly is a diagram in logic? Does this constitute a cleanly definable se
34#
發(fā)表于 2025-3-27 12:03:12 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:54 | 只看該作者
A Diagrammatic Calculus of Syllogisms,s by calculation. The calculus at issue allows the easy retrieving of the traditional rules of the syllogism and of the laws of the square of opposition. Moreover, it extends to .-term syllogisms and to syllogisms with complemented terms. In this respect, a comparison with De Morgan’s . is treated.
36#
發(fā)表于 2025-3-27 17:48:08 | 只看該作者
37#
發(fā)表于 2025-3-27 23:01:09 | 只看該作者
38#
發(fā)表于 2025-3-28 03:54:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:07:01 | 只看該作者
On the Completeness of Spider Diagrams Augmented with Constants,ical statements about set membership and containment. Here, existing work on spider diagrams is extended to include constant spiders that represent specific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsu
40#
發(fā)表于 2025-3-28 13:39:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永康市| 楚雄市| 吴堡县| 孝昌县| 湖口县| 永嘉县| 辽源市| 建宁县| 保康县| 石河子市| 郴州市| 哈巴河县| 万年县| 康定县| 略阳县| 辽阳县| 黎川县| 中方县| 永兴县| 突泉县| 隆尧县| 灵武市| 油尖旺区| 阳城县| 张掖市| 罗平县| 章丘市| 顺平县| 新和县| 德钦县| 新乡市| 桦甸市| 曲水县| 舒兰市| 千阳县| 齐河县| 小金县| 武乡县| 高邮市| 潢川县| 连山|