找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visual Reasoning with Diagrams; Amirouche Moktefi,Sun-Joo Shin Book 2013 Springer Basel 2013 diagrammatic reasoning.logic based on diagram

[復(fù)制鏈接]
樓主: Cyclone
31#
發(fā)表于 2025-3-26 23:11:07 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:10 | 只看該作者
On the Completeness of Spider Diagrams Augmented with Constants,ecific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsulating logical equivalence and logical consequence. We prove that the resulting logic is sound, complete and decidable.
33#
發(fā)表于 2025-3-27 05:24:09 | 只看該作者
What is a Logical Diagram?,ments in philosophy of mathematics and logic (e.g. Brown, Shin, Giaquinto) to take diagrams seriously—as more than a mere ‘heuristic aid’ to proof, but either proofs themselves, or irreducible components of such. However what exactly is a diagram in logic? Does this constitute a cleanly definable se
34#
發(fā)表于 2025-3-27 12:03:12 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:54 | 只看該作者
A Diagrammatic Calculus of Syllogisms,s by calculation. The calculus at issue allows the easy retrieving of the traditional rules of the syllogism and of the laws of the square of opposition. Moreover, it extends to .-term syllogisms and to syllogisms with complemented terms. In this respect, a comparison with De Morgan’s . is treated.
36#
發(fā)表于 2025-3-27 17:48:08 | 只看該作者
37#
發(fā)表于 2025-3-27 23:01:09 | 只看該作者
38#
發(fā)表于 2025-3-28 03:54:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:07:01 | 只看該作者
On the Completeness of Spider Diagrams Augmented with Constants,ical statements about set membership and containment. Here, existing work on spider diagrams is extended to include constant spiders that represent specific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsu
40#
發(fā)表于 2025-3-28 13:39:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠水县| 红河县| 仙居县| 南城县| 特克斯县| 平武县| 正定县| 汉川市| 泰来县| 分宜县| 渭南市| 鄂温| 万全县| 江阴市| 尤溪县| 长宁区| 浦东新区| 讷河市| 伊吾县| 仁布县| 栖霞市| 山东省| 怀远县| 全椒县| 石河子市| 元谋县| 鹿邑县| 苏尼特右旗| 崇义县| 秦皇岛市| 长武县| 镇平县| 辛集市| 宜章县| 武功县| 东丰县| 弋阳县| 万载县| 竹溪县| 喀什市| 台东市|