找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visual Question Answering; From Theory to Appli Qi Wu,Peng Wang,Wenwu Zhu Book 2022 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
查看: 42673|回復: 55
樓主
發(fā)表于 2025-3-21 16:26:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Visual Question Answering
副標題From Theory to Appli
編輯Qi Wu,Peng Wang,Wenwu Zhu
視頻videohttp://file.papertrans.cn/984/983777/983777.mp4
概述Provides the first comprehensive survey of and handbook on visual question answering (VQA).Is self-contained and reader-friendly: ranging from basic ML and NLP concepts and theory, to details of VQA a
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Visual Question Answering; From Theory to Appli Qi Wu,Peng Wang,Wenwu Zhu Book 2022 The Editor(s) (if applicable) and The Author(s), under
描述.Visual Question Answering (VQA) usually combines visual inputs like image and video with a natural language question concerning the input and generates a natural language answer as the output.?This is by nature a multi-disciplinary research problem, involving computer vision (CV), natural language processing (NLP), knowledge representation and reasoning (KR), etc...Further, VQA is an ambitious undertaking, as it must overcome the challenges of general image understanding and the question-answering task, as well as the difficulties entailed by using large-scale databases with mixed-quality inputs. However, with the advent of deep learning (DL) and driven by the existence of advanced techniques in both CV and NLP and the availability of relevant large-scale datasets, we have recently seen enormous strides in VQA, with more systems and promising results emerging...This book provides a comprehensive overview of VQA, covering fundamental theories, models, datasets, andpromising future directions. Given its scope, it can be used as a textbook on computer vision and natural language processing, especially for researchers and students in the area of visual question answering. It also high
出版日期Book 2022
關(guān)鍵詞Visual Question Answering; VQA; Image-based Question Answering; Vision-and-Language; Deep Learning
版次1
doihttps://doi.org/10.1007/978-981-19-0964-1
isbn_softcover978-981-19-0966-5
isbn_ebook978-981-19-0964-1Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Visual Question Answering影響因子(影響力)




書目名稱Visual Question Answering影響因子(影響力)學科排名




書目名稱Visual Question Answering網(wǎng)絡(luò)公開度




書目名稱Visual Question Answering網(wǎng)絡(luò)公開度學科排名




書目名稱Visual Question Answering被引頻次




書目名稱Visual Question Answering被引頻次學科排名




書目名稱Visual Question Answering年度引用




書目名稱Visual Question Answering年度引用學科排名




書目名稱Visual Question Answering讀者反饋




書目名稱Visual Question Answering讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:19 | 只看該作者
Deep Learning BasicsDeep learning?basics are essential for the visual question answering task since multimodal information is usually complex and multidimensional. Therefore, in this chapter, we present basic information regarding deep learning, covering the following:
地板
發(fā)表于 2025-3-22 07:56:47 | 只看該作者
Visual Question GenerationTo explore how questions regarding images are posed and abstract the events caused by objects in the image, the visual question generation (VQG) task has been established. In this chapter, we classify VQG methods according to whether their objective is data augmentation or visual understanding.
5#
發(fā)表于 2025-3-22 08:51:12 | 只看該作者
Qi Wu,Peng Wang,Wenwu ZhuProvides the first comprehensive survey of and handbook on visual question answering (VQA).Is self-contained and reader-friendly: ranging from basic ML and NLP concepts and theory, to details of VQA a
6#
發(fā)表于 2025-3-22 15:32:42 | 只看該作者
7#
發(fā)表于 2025-3-22 18:17:10 | 只看該作者
Advanced Models for?Video Question Answeringexist beyond this framework, which exhibit fine architectures and performances. In this chapter, we categorize these methods into four categories, i.e., ., .?and . and discuss the characteristics of these frameworks.
8#
發(fā)表于 2025-3-22 21:13:47 | 只看該作者
Advances in Computer Vision and Pattern Recognitionhttp://image.papertrans.cn/v/image/983777.jpg
9#
發(fā)表于 2025-3-23 01:35:46 | 只看該作者
https://doi.org/10.1007/978-981-19-0964-1Visual Question Answering; VQA; Image-based Question Answering; Vision-and-Language; Deep Learning
10#
發(fā)表于 2025-3-23 08:52:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
治县。| 凌源市| 普定县| 惠水县| 那坡县| 枣强县| 岐山县| 荣昌县| 陵川县| 巴南区| 庐江县| 资讯 | 河东区| 仁寿县| 二连浩特市| 齐齐哈尔市| 岑巩县| 镇江市| 闸北区| 鄂托克旗| 驻马店市| 安龙县| 盐津县| 衡水市| 连南| 周口市| 梧州市| 阜南县| 额济纳旗| 昌平区| 云阳县| 青岛市| 集安市| 安塞县| 若尔盖县| 龙门县| 扬州市| 韩城市| 景宁| 望奎县| 西林县|