找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visual Knowledge Discovery and Machine Learning; Boris Kovalerchuk Book 2018 Springer International Publishing AG 2018 Intelligent Systems

[復(fù)制鏈接]
樓主: commotion
31#
發(fā)表于 2025-3-27 00:05:49 | 只看該作者
Motivation, Problems and Approach,eversible lossy visual representations of n-D data along with their impact on efficiency of solving Data Mining/Machine Learning tasks. The approach concentrates on reversible representations along with the hybrid methodology to mitigate deficiencies of different representations?.
32#
發(fā)表于 2025-3-27 05:07:10 | 只看該作者
33#
發(fā)表于 2025-3-27 05:19:43 | 只看該作者
Discovering Visual Features and Shape Perception Capabilities in GLC,s for classification these high-dimensional data. The chapter concludes with a description of the cooperative visualization approach to enhance Knowledge Discovery in solving Data Mining/Machine Learning tasks.?
34#
發(fā)表于 2025-3-27 09:35:49 | 只看該作者
Pareto Front and General Line Coordinates,pter shows a way to accomplish this with GLC-L visualization method defined Chap. 7. It also shows a way to visualize the approximation set for the Pareto Front with Collocated Paired Coordinates, defined in Chap. 2 in comparison with Parallel Coordinates to assists in finding “best” Pareto points.
35#
發(fā)表于 2025-3-27 14:26:11 | 只看該作者
Toward Virtual Data Scientist and Super-Intelligence with Visual Means, to meet this Big data challenge, with a minimal contribution from data scientists. This chapter describes our vision of such a “virtual data scientist”, based on the visual approach of the General Line Coordinates.
36#
發(fā)表于 2025-3-27 19:51:09 | 只看該作者
37#
發(fā)表于 2025-3-28 01:00:09 | 只看該作者
38#
發(fā)表于 2025-3-28 02:17:59 | 只看該作者
Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L,relations and dimension reduction. Classification and dimension reduction tasks from three domains, image processing, computer-aided medical diagnostics and finance (stock market), are used to illustrate this method.
39#
發(fā)表于 2025-3-28 06:39:55 | 只看該作者
40#
發(fā)表于 2025-3-28 13:11:00 | 只看該作者
Intelligent Systems Reference Libraryhttp://image.papertrans.cn/v/image/983746.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
志丹县| 武汉市| 敦化市| 凌云县| 马公市| 石门县| 邯郸市| 昔阳县| 安塞县| 静乐县| 松滋市| 泗水县| 都江堰市| 银川市| 天峨县| 宣武区| 怀集县| 夏津县| 孝感市| 梁河县| 田林县| 六安市| 湘潭市| 西充县| 河北区| 正定县| 泗洪县| 怀集县| 会昌县| 应城市| 阆中市| 聊城市| 凌海市| 洪泽县| 岳西县| 武穴市| 洛阳市| 萍乡市| 西充县| 将乐县| 建始县|