找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visual Domain Adaptation in the Deep Learning Era; Gabriela Csurka,Timothy M. Hospedales,Tatiana Tomm Book 2022 Springer Nature Switzerlan

[復(fù)制鏈接]
查看: 10021|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:18:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Visual Domain Adaptation in the Deep Learning Era
編輯Gabriela Csurka,Timothy M. Hospedales,Tatiana Tomm
視頻videohttp://file.papertrans.cn/984/983719/983719.mp4
叢書名稱Synthesis Lectures on Computer Vision
圖書封面Titlebook: Visual Domain Adaptation in the Deep Learning Era;  Gabriela Csurka,Timothy M. Hospedales,Tatiana Tomm Book 2022 Springer Nature Switzerlan
描述Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic do
出版日期Book 2022
版次1
doihttps://doi.org/10.1007/978-3-031-79175-8
isbn_softcover978-3-031-79170-3
isbn_ebook978-3-031-79175-8Series ISSN 2153-1056 Series E-ISSN 2153-1064
issn_series 2153-1056
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Visual Domain Adaptation in the Deep Learning Era影響因子(影響力)




書目名稱Visual Domain Adaptation in the Deep Learning Era影響因子(影響力)學(xué)科排名




書目名稱Visual Domain Adaptation in the Deep Learning Era網(wǎng)絡(luò)公開度




書目名稱Visual Domain Adaptation in the Deep Learning Era網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Visual Domain Adaptation in the Deep Learning Era被引頻次




書目名稱Visual Domain Adaptation in the Deep Learning Era被引頻次學(xué)科排名




書目名稱Visual Domain Adaptation in the Deep Learning Era年度引用




書目名稱Visual Domain Adaptation in the Deep Learning Era年度引用學(xué)科排名




書目名稱Visual Domain Adaptation in the Deep Learning Era讀者反饋




書目名稱Visual Domain Adaptation in the Deep Learning Era讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:50:57 | 只看該作者
Gabriela Csurka,Timothy M. Hospedales,Mathieu Salzmann,Tatiana Tommasi the physiological and pharmacological points of view. In the current volume, chapters are devoted to the catecholamines, which for a number of reasons were not represented in the earlier volume, and to acetylcholine and the neuropeptides, about which much new information has recently appeared. Volu
地板
發(fā)表于 2025-3-22 07:06:02 | 只看該作者
5#
發(fā)表于 2025-3-22 11:19:47 | 只看該作者
6#
發(fā)表于 2025-3-22 16:49:54 | 只看該作者
7#
發(fā)表于 2025-3-22 17:49:31 | 只看該作者
8#
發(fā)表于 2025-3-23 00:47:28 | 只看該作者
Gabriela Csurka,Timothy M. Hospedales,Mathieu Salzmann,Tatiana Tommasiiologic mechanisms and in the search for a major hemodynamic or embolic cause. The signs reported and symptoms assessed are useful for localization of the ischemic region of the brain and identification of the affected vascular territories. Even in the case of a typical clinical picture the clinical
9#
發(fā)表于 2025-3-23 01:49:23 | 只看該作者
10#
發(fā)表于 2025-3-23 06:41:46 | 只看該作者
determination. Owing to the large number increasing sophistication applied to these prob- of papers included in this book and the interests lems, are amply demonstrated in this book. of rapid publication, it was not possible to in- A wide variety of topics was discussed at the clude the discussions
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐池县| 紫阳县| 延川县| 大宁县| 东丰县| 昭觉县| 武安市| 龙南县| 昌图县| 深圳市| 凭祥市| 玛纳斯县| 繁昌县| 浦城县| 泽州县| 深州市| 延庆县| 霍城县| 新源县| 名山县| 罗江县| 廉江市| 北宁市| 白河县| 稷山县| 神池县| 固原市| 景谷| 东乡县| 和田县| 都昌县| 威远县| 顺义区| 宿州市| 云龙县| 秦皇岛市| 铁岭市| 凌海市| 肃南| 车致| 盐山县|