找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visual Analytics for Data Scientists; Natalia Andrienko,Gennady Andrienko,Stefan Wrobel Textbook 2020 Springer Nature Switzerland AG 2020

[復制鏈接]
查看: 13420|回復: 54
樓主
發(fā)表于 2025-3-21 18:43:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Visual Analytics for Data Scientists
編輯Natalia Andrienko,Gennady Andrienko,Stefan Wrobel
視頻videohttp://file.papertrans.cn/984/983671/983671.mp4
概述Presents the main principles, techniques and approaches of visual analytics in a practice-oriented way.Describes the use of visual analytics methods, organised by various data types including multidim
圖書封面Titlebook: Visual Analytics for Data Scientists;  Natalia Andrienko,Gennady Andrienko,Stefan Wrobel Textbook 2020 Springer Nature Switzerland AG 2020
描述.This textbook presents the main principles of visual analytics and describes techniques and approaches that have proven their utility and can be readily reproduced. Special emphasis is placed on various instructive examples of analyses, in which the need for and the use of visualisations are explained in detail..The book begins by introducing the main ideas and concepts of visual analytics and explaining why it should be considered an essential part of data science methodology and practices. It then describes the general principles underlying the visual analytics approaches, including those on appropriate visual representation, the use of interactive techniques, and classes of computational methods. It continues with discussing how to use visualisations for getting aware of data properties that need to be taken into account and for detecting possible data quality issues that may impair the analysis. The second part of the book describes visual analytics methods and workflows,organised by various data types including multidimensional data, data with spatial and temporal components, data describing binary relationships, texts, images and video. For each data type, the specific prope
出版日期Textbook 2020
關鍵詞Data Science; Data Analytics; Visual Analytics; Data Mining; Machine Learning
版次1
doihttps://doi.org/10.1007/978-3-030-56146-8
isbn_softcover978-3-030-56148-2
isbn_ebook978-3-030-56146-8
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Visual Analytics for Data Scientists影響因子(影響力)




書目名稱Visual Analytics for Data Scientists影響因子(影響力)學科排名




書目名稱Visual Analytics for Data Scientists網絡公開度




書目名稱Visual Analytics for Data Scientists網絡公開度學科排名




書目名稱Visual Analytics for Data Scientists被引頻次




書目名稱Visual Analytics for Data Scientists被引頻次學科排名




書目名稱Visual Analytics for Data Scientists年度引用




書目名稱Visual Analytics for Data Scientists年度引用學科排名




書目名稱Visual Analytics for Data Scientists讀者反饋




書目名稱Visual Analytics for Data Scientists讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:23:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:15:14 | 只看該作者
地板
發(fā)表于 2025-3-22 08:02:02 | 只看該作者
Principles of Interactive Visualisations position along an axis, size, colour hue and lightness, and shape of a graphical element. The variables differ by their perceptual properties, and it is important to choose appropriate variables depending on the properties of the data they are intended to represent. We discuss the commonly used ty
5#
發(fā)表于 2025-3-22 10:56:45 | 只看該作者
Computational Techniques in Visual Analyticssualisation and computation has two sides. One side is computational support to visual analysis: outcomes of computations are intended to provide input to human cognition; for this purpose, they are represented visually. The other side is visual support to application of computational methods, which
6#
發(fā)表于 2025-3-22 16:28:51 | 只看該作者
7#
發(fā)表于 2025-3-22 20:47:09 | 只看該作者
8#
發(fā)表于 2025-3-22 22:17:09 | 只看該作者
Visual Analytics for Understanding Relationships between Entitiesused to refer, actually, to a system of relationships, which can be represented as a graph, rather than to the mathematical model itself. In line with this practice, the term “graph” is used in this chapter as a synonym to “system of relationships”. Graph data have high importance in many applicatio
9#
發(fā)表于 2025-3-23 01:33:22 | 只看該作者
10#
發(fā)表于 2025-3-23 08:55:35 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 05:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁南县| 芦山县| 临湘市| 巴中市| 宁晋县| 榕江县| 拉孜县| 唐山市| 浑源县| 达拉特旗| 嘉善县| 凤庆县| 拉孜县| 抚州市| 克什克腾旗| 建德市| 富蕴县| 富宁县| 辽阳市| 独山县| 全椒县| 白玉县| 故城县| 嘉祥县| 新疆| 夏邑县| 鹿泉市| 瑞金市| 四会市| 称多县| 承德县| 五莲县| 长沙县| 阆中市| 和政县| 托里县| 宣汉县| 大冶市| 阳高县| 泽普县| 沅陵县|