找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Victorian Identities; Social and Cultural Ruth Robbins (Lecturer in Literary Studies),Julian Book 1996 Palgrave Macmillan, a division of M

[復(fù)制鏈接]
樓主: 難受
11#
發(fā)表于 2025-3-23 11:21:56 | 只看該作者
12#
發(fā)表于 2025-3-23 15:46:52 | 只看該作者
13#
發(fā)表于 2025-3-23 19:14:37 | 只看該作者
s are conventions based upon some double principle. Pluralisms are conventions based upon some multiple principle. A long-term historical survey of previous formal conventions in thought and knowledge has revealed vast numbers of pluralisms from which a gradient of decreasing complexity leads to man
14#
發(fā)表于 2025-3-23 23:59:58 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:56 | 只看該作者
David Aldersond that, except when all the η‘s vanish, they satisfy an irreducible monic period equation with integer coefficients of degree ?(n)/t(n). Soon thereafter Fuchs gave a necessary and sufficient condition for the vanishing of the η‘s, namely: n.=0 if and only if t(n)=pt(n/p) for some prime p dividing n.
16#
發(fā)表于 2025-3-24 08:41:55 | 只看該作者
is to exhibit links between three topics : automaticity, algebraicity (mod n) and D-finiteness. Diagonals of rational fractions seem to be at the heart of the problem. In the last part, we show they appear as (regular) solutions near singularity of Picard-Fuchs differential equations.
17#
發(fā)表于 2025-3-24 10:40:51 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:27 | 只看該作者
Claire M. Berardini together with some valuable numerical information was given by Iwaniec, van de Lune and te Riele [5] (see also te Riele [7]) and what we seek to do here, in effect, is to justify the conclusions of [5]. It has been shown elsewhere (in [2]) how to construct sieves of dimension κ > 1 on the basis of
19#
發(fā)表于 2025-3-24 19:49:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:05:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋江市| 高雄市| 临夏市| 耒阳市| 平顶山市| 长岭县| 普安县| 娄底市| 陈巴尔虎旗| 资源县| 和林格尔县| 卓尼县| 墨玉县| 溧水县| 乐昌市| 云安县| 迭部县| 黄龙县| 塘沽区| 镇江市| 辉南县| 砀山县| 安溪县| 宜川县| 永昌县| 泽库县| 施甸县| 湄潭县| 克拉玛依市| 宣武区| 宁明县| 衡阳县| 河东区| 新安县| 佳木斯市| 泽普县| 平乡县| 革吉县| 新安县| 昆明市| 汾阳市|