找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vibrations of mechanical systems with regular structure; Ludmilla Banakh,Mark Kempner Book 2010 Springer-Verlag Berlin Heidelberg 2010 Rot

[復制鏈接]
樓主: 全體
41#
發(fā)表于 2025-3-28 15:39:39 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:13 | 只看該作者
Vibrations of Systems with Geometric Symmetry. Quasi-symmetrical Systemsgeometric symmetry find wide application in many areas of engineering. They form various kinds of machine platforms, cyclically repeated forms of stators, rotors with blades mounted on them, etc. Symmetric systems are widely applied also in the civil engineering where their use is convenient due to
43#
發(fā)表于 2025-3-28 23:54:59 | 只看該作者
44#
發(fā)表于 2025-3-29 05:20:22 | 只看該作者
Vibrations of Regular Ribbed Cylindrical Shells forces and the deformations of the middle surface of the shell proposed by V.V. Novozhilov and L.I. Balabukh [83] are used. The main advantage of these equations is that in them Betty’s law is observed very precisely and thus the dynamic stiffness matrix is symmetric, and therefore it is possible t
45#
發(fā)表于 2025-3-29 07:49:23 | 只看該作者
Book 2010 a geom- ric symmetry. Regular structures have for a long time been attracting the attention of scientists by the extraordinary beauty of their forms. They have been studied in many areas of science: chemistry, physics, biology, etc. Systems with geometric symmetry are used widely in many areas of e
46#
發(fā)表于 2025-3-29 13:12:21 | 只看該作者
1612-1384 Calculation.Seamless application of the mathematical apparatIn this book, regular structures are de ned as periodic structures consisting of repeated elements (translational symmetry) as well as structures with a geom- ric symmetry. Regular structures have for a long time been attracting the attenti
47#
發(fā)表于 2025-3-29 18:41:21 | 只看該作者
48#
發(fā)表于 2025-3-29 20:55:19 | 只看該作者
49#
發(fā)表于 2025-3-30 02:26:31 | 只看該作者
50#
發(fā)表于 2025-3-30 05:53:56 | 只看該作者
978-1-4419-1618-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Busines
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
旺苍县| 新宾| 连云港市| 德庆县| 蓝田县| 玉龙| 万载县| 准格尔旗| 泰宁县| 九龙城区| 广水市| 威信县| 灵璧县| 金门县| 台前县| 鹰潭市| 金乡县| 安仁县| 会同县| 金乡县| 阿城市| 米泉市| 佛坪县| 治多县| 子长县| 田东县| 青冈县| 台东市| 彭州市| 安乡县| 应用必备| 青岛市| 新乐市| 鄯善县| 贡嘎县| 万年县| 盈江县| 东平县| 江油市| 台东市| 明星|