找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vibrational-Rotational Excitations in Nonlinear Molecular Systems; A. A. Ovchinnikov,N. S. Erikhman,K. A. Pronin Book 2001 Springer Scienc

[復制鏈接]
樓主: 小故障
11#
發(fā)表于 2025-3-23 13:09:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:57 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:16 | 只看該作者
Coupled nonlinear oscillators: formation and decay of local modes,oincare map). These are intersections of two-dimensional tori (with the studied trajectories on them) with the three-dimensional manifold, which fixes one of the coordinates of the system (for example, .1 = 0 and .1 > 0). In the 4-dimensional phase space the Poincare map is a one-dimensional manifol
14#
發(fā)表于 2025-3-23 23:16:10 | 只看該作者
15#
發(fā)表于 2025-3-24 03:20:17 | 只看該作者
,Quantum Hamiltonians of vibrational — rotational excitations in polyatomic molecules; method of conm. In Sections 6.1 and 6.2 this technique will be used to write down the full vibrational-rotational Hamiltonian of the molecule. Sections 6.3 and 6.4 are devoted to the method of contact transformations, which enables one to represent the Hamiltonian of a molecule in the form of power series in the
16#
發(fā)表于 2025-3-24 10:21:33 | 只看該作者
Book 2001ser and the subsequent development of nonlinear optics. The latter describes the in- teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastroph
17#
發(fā)表于 2025-3-24 14:09:32 | 只看該作者
18#
發(fā)表于 2025-3-24 15:58:46 | 只看該作者
Vibrational-Rotational Excitations in Nonlinear Molecular Systems
19#
發(fā)表于 2025-3-24 19:53:17 | 只看該作者
Vibrational-Rotational Excitations in Nonlinear Molecular Systems978-1-4615-1317-9
20#
發(fā)表于 2025-3-24 23:19:19 | 只看該作者
978-1-4613-5494-9Springer Science+Business Media New York 2001
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 20:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绵阳市| 桑日县| 宿迁市| 高邮市| 镇雄县| 黄平县| 肥乡县| 乌兰县| 黔西县| 梅州市| 济源市| 同江市| 墨竹工卡县| 肇源县| 香格里拉县| 道真| 梓潼县| 罗源县| 阿合奇县| 纳雍县| 南投市| 阜阳市| 梁平县| 泽州县| 思南县| 乌苏市| 柘荣县| 兰溪市| 松滋市| 宜州市| 竹北市| 长治市| 扶沟县| 扎囊县| 儋州市| 从化市| 天峨县| 邻水| 蒙阴县| 万荣县| 章丘市|