找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vibration Engineering for a Sustainable Future; Numerical and Analyt Sebastian Oberst,Benjamin Halkon,Terry Brown Conference proceedings 20

[復(fù)制鏈接]
樓主: Inoculare
11#
發(fā)表于 2025-3-23 13:23:15 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:22:06 | 只看該作者
Structure Optimization of Noise and Vibration Performance using FRF Baselineon method, a method focusing on frequency response function (FRF) with many peaks has been widely used. In this paper, we propose FRF baseline as an index that represents the trend of FRF in a wider frequency band. As a result of numerical simulation, it is confirmed that the optimization method bas
14#
發(fā)表于 2025-3-23 23:43:20 | 只看該作者
Snowboard Simulation with Distinct Element Method and Finite Element Methodrmance in conjunction with simulations. Our developed simulation reproduces the discrete behavior of snow and deformation of a snowboard, allowing the evaluation of snowboard performance on a snow surface. Snow behavior is calculated by the distinct element method, and the elastic deformation of a s
15#
發(fā)表于 2025-3-24 04:28:43 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:23 | 只看該作者
Bifurcation Analysis of a Doubly Curved Thin Shell Considering Inertial Effectsparts of instrumentation (optical mirrors, membranes) or vehicles components (solar panels/antennas in satellites or car and aircraft bodies). Numerical modelling of those structures is commonly conducted using shell elements. Especially doubly curved shells have found much attention due to their ap
17#
發(fā)表于 2025-3-24 11:07:52 | 只看該作者
18#
發(fā)表于 2025-3-24 15:08:58 | 只看該作者
19#
發(fā)表于 2025-3-24 22:27:24 | 只看該作者
Analysis of Transient Response Moment of a SDOF System Under Non-Gaussian Random Excitation by the Ehod. In this method, in order to derive a closed set of moment equations for the system response, the diffusion coefficient in a stochastic differential equation governing the excitation is replaced by an equivalent one, which is expressed by a quadratic polynomial. In numerical examples, the analyt
20#
發(fā)表于 2025-3-25 00:08:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣榆县| 介休市| 五河县| 饶河县| 武宁县| 孝感市| 开封县| 东丽区| 鄂托克前旗| 青龙| 苗栗县| 灯塔市| 凌海市| 招远市| 忻城县| 成武县| 苍梧县| 于田县| 九江市| 澄迈县| 于田县| 淮安市| 南投市| 萝北县| 衡阳市| 叙永县| 金川县| 柞水县| 合江县| 玉田县| 丹凤县| 临桂县| 乌兰县| 郸城县| 三亚市| 蓬溪县| 凯里市| 砚山县| 棋牌| 武川县| 广昌县|