找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Verification, Model Checking, and Abstract Interpretation; 25th International C Rayna Dimitrova,Ori Lahav,Sebastian Wolff Conference procee

[復(fù)制鏈接]
樓主: Embolism
51#
發(fā)表于 2025-3-30 10:23:31 | 只看該作者
52#
發(fā)表于 2025-3-30 15:46:23 | 只看該作者
Project and?Conquer: Fast Quantifier Elimination for?Checking Petri Net Reachability transparently, as a pre-processing step of existing model-checkers. Our approach is based on a new procedure that can project a property, about an initial Petri net, into an equivalent formula that only refers to the reduced version of this net. Our projection is defined as a variable elimination p
53#
發(fā)表于 2025-3-30 16:41:15 | 只看該作者
Parameterized Verification of?Disjunctive Timed Networksunicate via . that enable a transition only if there is another process in a given location. We address the minimum-time reachability problem (.) in DTN s, and show how to efficiently solve it based on a novel zone-graph algorithm. We further show that solving . allows us to construct a “summary” TA
54#
發(fā)表于 2025-3-30 20:51:45 | 只看該作者
55#
發(fā)表于 2025-3-31 03:58:26 | 只看該作者
56#
發(fā)表于 2025-3-31 06:57:48 | 只看該作者
Model-Guided Synthesis for?, over?Finite Traces input formula. In general, satisfiability is easier than synthesis in both theory and practice, as satisfiability needs only to find a satisfying trace, while synthesis has to find a winning strategy..This paper presents a novel technique called ., which improves the performance of synthesis for .,
57#
發(fā)表于 2025-3-31 13:04:26 | 只看該作者
58#
發(fā)表于 2025-3-31 17:03:20 | 只看該作者
Interpolation and?Quantifiers in?Ortholatticest to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based proof system for quantified orthologic, which we prove sound and complete for the class of all complete ortholattices. We show that orthologic does not admit quantifier elimination in general. Despite that,
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泗水县| 小金县| 沅陵县| 临颍县| 昌都县| 金乡县| 资源县| 石嘴山市| 永泰县| 赫章县| 聂荣县| 邓州市| 岑溪市| 勐海县| 罗山县| 合水县| 高邑县| 云安县| 苏州市| 泰宁县| 游戏| 县级市| 嘉义市| 克山县| 观塘区| 绥阳县| 日喀则市| 体育| 韩城市| 五家渠市| 翼城县| 米泉市| 宕昌县| 鲁山县| 随州市| 阜康市| 禹州市| 开阳县| 石河子市| 密山市| 司法|