找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Verification of Business Rules Programs; Bruno Berstel-Da Silva Book 2014 Springer-Verlag Berlin Heidelberg 2014 AI.artificial intelligenc

[復(fù)制鏈接]
樓主: Jackson
41#
發(fā)表于 2025-3-28 16:44:55 | 只看該作者
42#
發(fā)表于 2025-3-28 21:09:56 | 只看該作者
Correctness of Programs: A Comparisonen nondeterministic programs. This comparison investigates whether a parallel program, and then a nondeterministic one, can be found for any rule program, so that it has the same input/output behavior. We will see that in general, one cannot find a parallel program with the same input/output behavio
43#
發(fā)表于 2025-3-29 01:51:25 | 只看該作者
Main Steps in Rule Program Verificationividual correctness formulas for its rules. This verification method is composed of several proof rules that are suited to various types of rule programs and assertions. In the present chapter, we introduce a simpler proof rule for a particular class of rule programs, so as to exhibit the core mecha
44#
發(fā)表于 2025-3-29 05:12:13 | 只看該作者
A Verification Method for Rule Programsograms. In this chapter, we expose the proof rule for the general case. We prove that this proof rule is sound and relatively complete. We illustrate it with the complete application of our verification method on an example rule program.
45#
發(fā)表于 2025-3-29 07:27:10 | 只看該作者
Book 2014gement systems, it has been possible to introduce rule-based programming to nonprogrammers, allowing them to map expert intent into code in applications such as fraud detection, financial transactions, healthcare, retail, and marketing. However, a remaining concern is the quality, safety, and reliab
46#
發(fā)表于 2025-3-29 14:26:32 | 只看該作者
47#
發(fā)表于 2025-3-29 17:07:23 | 只看該作者
48#
發(fā)表于 2025-3-29 23:42:51 | 只看該作者
,Die beiden Haupts?tze der Wertverteilungslehre,entsprechend ihrer Vielfachheit gez?hlt wird. Wird eine .-fache .-Stelle nur (.-1) mal gez?hlt, dann schreibt man . (., .). Entsprechendes gilt für die Polstellenanzahlen .(.,.) =. (.,∞) und .1 (.,.) = .1 (., ∞).
49#
發(fā)表于 2025-3-30 03:47:27 | 只看該作者
50#
發(fā)表于 2025-3-30 06:36:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛学| 蛟河市| 斗六市| 磐安县| 盐山县| 宿迁市| 筠连县| 仪征市| 长岭县| 沙雅县| 简阳市| 建昌县| 高台县| 紫金县| 宜黄县| 安吉县| 房山区| 孝昌县| 庆阳市| 永安市| 呼图壁县| 百色市| 徐水县| 南溪县| 图木舒克市| 怀柔区| 苍山县| 左贡县| 伊川县| 阿拉尔市| 宝丰县| 巴青县| 普兰店市| 精河县| 贡山| 吉安市| 乐平市| 古蔺县| 汶川县| 太康县| 隆子县|