找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vektorbündel; Vom M?bius-Bündel bi Karlheinz Knapp Textbook 2013 Springer Fachmedien Wiesbaden 2013 Algebraische Topologie.Homotopietheorie

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:45:00 | 只看該作者
,Vektorbündel und stabile Homotopie,emeinerten Kohomologietheorie formulieren lassen, sind oft besser zug?nglich, darüber hinaus steht ein umfangreicher Apparat von Methoden zur Behandlung zur Verfügung. Unter bestimmten Voraussetzungen, meist an die Dimensionsdaten des Problems, ist es manchmal m?glich solche an sich instabilen Probl
32#
發(fā)表于 2025-3-27 01:42:40 | 只看該作者
33#
發(fā)表于 2025-3-27 08:36:41 | 只看該作者
J-Homomorphismus und EHP-Sequenz,st das Herausarbeiten des Einflusses der einem Vektorbündel . über einer Einh?ngung Σ. unterliegenden sph?rischen Faserung .(.) auf das Schnittproblem für .. Dazu besprechen wir etwas ausführlicher die EHP-Sequenz, die das Analogon der Stabilisierungssequenz in der Homotopietheorie ist. Die Rolle de
34#
發(fā)表于 2025-3-27 10:57:21 | 只看該作者
35#
發(fā)表于 2025-3-27 17:32:14 | 只看該作者
Textbook 2013, veranschaulichen schon unmittelbar zwei Hauptaspekte..Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein M?biusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch
36#
發(fā)表于 2025-3-27 21:37:09 | 只看該作者
zur Vertiefung wieder.Beweise werden sehr ausführlich ausge.Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das M?biusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte..Einmal geben Vektorbündel Hinweise
37#
發(fā)表于 2025-3-27 21:57:37 | 只看該作者
38#
發(fā)表于 2025-3-28 04:26:19 | 只看該作者
,Vektorbündel: Grundlagen,K-Vektorr?umen. Statt eines einzelnen Vektorraums betrachtet man also eine ganze Familie oder ein Bündel von Vektorr?umen. Die Verbindung zwischen Algebra und Topologie wird durch die “Stetigkeit” der Familie .→.. gestiftet.
39#
發(fā)表于 2025-3-28 08:03:01 | 只看該作者
,Umgang mit Vektorbündeln,Mannigfaltigkeit. Wichtigstes Ergebnis ist der Schnitterweiterungssatz, der auf der Verwendung einer Zerlegung der Eins beruht. Aus diesem folgt direkt der Homotopiesatz, der besagt, da? kleine Deformationen beim Zurückziehen eines Vektorbündels dessen Isomorphieklasse nicht ?ndern.
40#
發(fā)表于 2025-3-28 14:01:29 | 只看該作者
,Charakteristische Klassen für Vektorbündel, Komplexe eingeführt und entspricht daher dem Zugang zu Vektorbündeln über klassifizierende R?ume natürlich am ehesten. Ebenso kurz ist die darauf folgende Einführung in die K-Theorie, genauer besprochen werden die Produkte und die Bott-Periodizit?t.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道真| 建平县| 宁南县| 泰来县| 灯塔市| 明光市| 万州区| 福鼎市| 资源县| 水城县| 广南县| 丹东市| 固镇县| 泽库县| 抚松县| 仁寿县| 囊谦县| 石河子市| 浠水县| 邯郸市| 临泽县| 寿阳县| 黄石市| 河西区| 呼和浩特市| 黑河市| 拜城县| 灵石县| 若尔盖县| 吴江市| 德安县| 堆龙德庆县| 兴化市| 延安市| 集贤县| 阿拉善右旗| 田林县| 镇雄县| 阿城市| 高碑店市| 江孜县|