找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Regularization for Systems of Inverse Problems; Tikhonov Regularizat Richard Huber Book 2019 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 53275|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:33:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Variational Regularization for Systems of Inverse Problems
副標(biāo)題Tikhonov Regularizat
編輯Richard Huber
視頻videohttp://file.papertrans.cn/981/980616/980616.mp4
概述Rigorous analysis of systems of inverse problems
叢書名稱BestMasters
圖書封面Titlebook: Variational Regularization for Systems of Inverse Problems; Tikhonov Regularizat Richard Huber Book 2019 The Editor(s) (if applicable) and
描述Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scienti?c ?elds. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their speci?c structure. Such an approach allows to choose the regularization weights of each subproblem individually with respect to the corresponding noise levels and degrees of ill-posedness..
出版日期Book 2019
關(guān)鍵詞Applied Mathematics; Mathematical Image Processing; Radon Transform; Tomography Reconstruction; Total Ge
版次1
doihttps://doi.org/10.1007/978-3-658-25390-5
isbn_softcover978-3-658-25389-9
isbn_ebook978-3-658-25390-5Series ISSN 2625-3577 Series E-ISSN 2625-3615
issn_series 2625-3577
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Variational Regularization for Systems of Inverse Problems影響因子(影響力)




書目名稱Variational Regularization for Systems of Inverse Problems影響因子(影響力)學(xué)科排名




書目名稱Variational Regularization for Systems of Inverse Problems網(wǎng)絡(luò)公開度




書目名稱Variational Regularization for Systems of Inverse Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Variational Regularization for Systems of Inverse Problems被引頻次




書目名稱Variational Regularization for Systems of Inverse Problems被引頻次學(xué)科排名




書目名稱Variational Regularization for Systems of Inverse Problems年度引用




書目名稱Variational Regularization for Systems of Inverse Problems年度引用學(xué)科排名




書目名稱Variational Regularization for Systems of Inverse Problems讀者反饋




書目名稱Variational Regularization for Systems of Inverse Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:20 | 只看該作者
General Tikhonov Regularisation,lassical regularisation approach to illposed inverse problems, that features optimisation problems balancing the discrepancy in the data with costs generated by a function penalising undesired properties. First we consider the well-known single-data approach.
板凳
發(fā)表于 2025-3-22 01:05:51 | 只看該作者
地板
發(fā)表于 2025-3-22 06:16:25 | 只看該作者
5#
發(fā)表于 2025-3-22 08:59:10 | 只看該作者
6#
發(fā)表于 2025-3-22 13:17:44 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:38 | 只看該作者
Variational Regularization for Systems of Inverse Problems978-3-658-25390-5Series ISSN 2625-3577 Series E-ISSN 2625-3615
8#
發(fā)表于 2025-3-22 23:56:06 | 只看該作者
9#
發(fā)表于 2025-3-23 03:34:36 | 只看該作者
https://doi.org/10.1007/978-3-658-25390-5Applied Mathematics; Mathematical Image Processing; Radon Transform; Tomography Reconstruction; Total Ge
10#
發(fā)表于 2025-3-23 06:37:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌阳县| 普定县| 柘荣县| 洪洞县| 曲阳县| 喀什市| 抚顺县| 大新县| 南乐县| 恩施市| 萍乡市| 宜兰市| 军事| 铜陵市| 万州区| 洱源县| 新河县| 卢龙县| 高陵县| 淮滨县| 青冈县| 房产| 大冶市| 黄浦区| 新巴尔虎左旗| 会同县| 商城县| 客服| 民权县| 通道| 胶州市| 哈巴河县| 仪陇县| 郎溪县| 吉木萨尔县| 花垣县| 贵阳市| 东山县| 临江市| 东港市| 虹口区|