找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods in Shape Optimization Problems; Dorin Bucur,Giuseppe Buttazzo Textbook 2005 Birkh?user Boston 2005 Excel.functional an

[復(fù)制鏈接]
查看: 42950|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:14:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Variational Methods in Shape Optimization Problems
編輯Dorin Bucur,Giuseppe Buttazzo
視頻videohttp://file.papertrans.cn/981/980601/980601.mp4
概述Shape optimization problems are treated from the classical and modern perspectives.Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid
叢書名稱Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Variational Methods in Shape Optimization Problems;  Dorin Bucur,Giuseppe Buttazzo Textbook 2005 Birkh?user Boston 2005 Excel.functional an
描述The fascinating ?eld of shape optimization problems has received a lot of attention in recent years, particularly in relation to a number of applications in physics and engineering that require a focus on shapes instead of parameters or functions. The goal of these applications is to deform and modify the admissible shapes in order to comply with a given cost function that needs to be optimized. In this respect the problems are both classical (as the isoperimetric problem and the Newton problem of the ideal aerodynamical shape show) and modern (re?ecting the many results obtained in the last few decades). The intriguing feature is that the competing objects are shapes, i.e., domains of N R , instead of functions, as it usually occurs in problems of the calculus of va- ations. This constraint often produces additional dif?culties that lead to a lack of existence of a solution and to the introduction of suitable relaxed formulations of the problem. However, in certain limited cases an optimal solution exists, due to the special form of the cost functional and to the geometrical restrictions on the class of competing domains.
出版日期Textbook 2005
關(guān)鍵詞Excel; functional analysis; optimization; ordinary differential equation; partial differential equation;
版次1
doihttps://doi.org/10.1007/b137163
isbn_ebook978-0-8176-4403-1Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightBirkh?user Boston 2005
The information of publication is updating

書目名稱Variational Methods in Shape Optimization Problems影響因子(影響力)




書目名稱Variational Methods in Shape Optimization Problems影響因子(影響力)學(xué)科排名




書目名稱Variational Methods in Shape Optimization Problems網(wǎng)絡(luò)公開度




書目名稱Variational Methods in Shape Optimization Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Variational Methods in Shape Optimization Problems被引頻次




書目名稱Variational Methods in Shape Optimization Problems被引頻次學(xué)科排名




書目名稱Variational Methods in Shape Optimization Problems年度引用




書目名稱Variational Methods in Shape Optimization Problems年度引用學(xué)科排名




書目名稱Variational Methods in Shape Optimization Problems讀者反饋




書目名稱Variational Methods in Shape Optimization Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:15:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:34 | 只看該作者
地板
發(fā)表于 2025-3-22 08:07:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:55:11 | 只看該作者
Dorin Bucur,Giuseppe ButtazzoShape optimization problems are treated from the classical and modern perspectives.Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid
6#
發(fā)表于 2025-3-22 14:23:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:22:35 | 只看該作者
Introduction to Shape Optimization Theory and Some Classical Problems,
8#
發(fā)表于 2025-3-23 00:46:27 | 只看該作者
9#
發(fā)表于 2025-3-23 01:39:30 | 只看該作者
Shape Optimization Problems with Dirichlet Condition on the Free Boundary,
10#
發(fā)表于 2025-3-23 06:53:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘乡市| 满城县| 区。| 同江市| 宁夏| 额敏县| 济宁市| 龙游县| 岳阳市| 元阳县| 石家庄市| 湖州市| 仁怀市| 临高县| 阿坝| 新竹市| 邯郸市| 亚东县| 新蔡县| 姜堰市| 德令哈市| 普安县| 连江县| 祥云县| 卓资县| 昭平县| 扶余县| 迭部县| 聊城市| 镇原县| 富锦市| 瑞金市| 江津市| 高雄县| 霸州市| 如皋市| 保靖县| 安宁市| 阿坝| 梁平县| 即墨市|