找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods in Mathematical Physics; A Unified Approach Philippe Blanchard,Erwin Brüning Textbook 1992 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: Optician
31#
發(fā)表于 2025-3-27 00:59:25 | 只看該作者
Nonlinear Elliptic Boundary Value Problems and Monotonic Operators,l equations (see [7.1] for a natural generalisation to differential equations of order 2. > 1) and thus we consider the following . on the Sobolev space ..(.), where . ? ?. is open:.where.and.assuming all values to be in ?.
32#
發(fā)表于 2025-3-27 04:57:17 | 只看該作者
Nonlinear Elliptic Eigenvalue Problems,an solve the nonlinear eigenvalue equation. in a simple way by determining the critical points of the function . on suitable level surfaces ..(.) of . or, conversely, by determining the critical points of . on sutiable level surfaces ..(.) of .. The eigenvalue λ appears thereby as a Lagrange multiplier.
33#
發(fā)表于 2025-3-27 07:52:14 | 只看該作者
Constrained Minimisation Problems (Method of Lagrange Multipliers),m. We want to determine the minimum of the action functional subject to the subsidiary condition that the motion be on a given surface. The restriction in this case is, therefore, that the points . ∈ .. satisfy an equation of the form .(.) = 0, i.e. the equation of the surface.
34#
發(fā)表于 2025-3-27 10:23:22 | 只看該作者
35#
發(fā)表于 2025-3-27 16:22:09 | 只看該作者
Some Remarks on the History and Objectives of the Calculus of Variations,had developed in the previous year, and whose formal consequences he was now engaged in unravelling. Nowadays, the expression “calculus of variations”, or “variational calculus”, as it is often called, is used in a much wider sense. The subject matter of variational calculus is the mathematical form
36#
發(fā)表于 2025-3-27 18:42:47 | 只看該作者
Extrema of Differentiable Functions,ose uniqueness (in the sense of Chap. 1) have been established. It is not possible, with the theorems we proved in Chap. 1 for the existence of an extremum of a functional .: . → ?, (where . is an open subset of a Banach space .), to find those points at which this functional attains, for example, i
37#
發(fā)表于 2025-3-28 00:59:54 | 只看該作者
Constrained Minimisation Problems (Method of Lagrange Multipliers), of . subject to certain restrictions on the points . ∈ .. A well-known example from classical mechanics can be used to illustrate this type of problem. We want to determine the minimum of the action functional subject to the subsidiary condition that the motion be on a given surface. The restrictio
38#
發(fā)表于 2025-3-28 04:07:15 | 只看該作者
39#
發(fā)表于 2025-3-28 07:40:06 | 只看該作者
40#
發(fā)表于 2025-3-28 12:44:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮滨县| 宝丰县| 三台县| 沙湾县| 武冈市| 斗六市| 苍南县| 山东省| 海口市| 镇赉县| 同仁县| 芜湖县| 博爱县| 宾川县| 凌源市| 印江| 瓦房店市| 巴楚县| 五河县| 永安市| 大埔县| 渭源县| 房山区| 五寨县| 丽水市| 淳安县| 阜宁县| 荥阳市| 崇礼县| 南乐县| 东源县| 柳江县| 信丰县| 吉安市| 兰坪| 自治县| 舟曲县| 黑水县| 凤庆县| 吐鲁番市| 平湖市|