找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods in Mathematical Physics; A Unified Approach Philippe Blanchard,Erwin Brüning Textbook 1992 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: Optician
31#
發(fā)表于 2025-3-27 00:59:25 | 只看該作者
Nonlinear Elliptic Boundary Value Problems and Monotonic Operators,l equations (see [7.1] for a natural generalisation to differential equations of order 2. > 1) and thus we consider the following . on the Sobolev space ..(.), where . ? ?. is open:.where.and.assuming all values to be in ?.
32#
發(fā)表于 2025-3-27 04:57:17 | 只看該作者
Nonlinear Elliptic Eigenvalue Problems,an solve the nonlinear eigenvalue equation. in a simple way by determining the critical points of the function . on suitable level surfaces ..(.) of . or, conversely, by determining the critical points of . on sutiable level surfaces ..(.) of .. The eigenvalue λ appears thereby as a Lagrange multiplier.
33#
發(fā)表于 2025-3-27 07:52:14 | 只看該作者
Constrained Minimisation Problems (Method of Lagrange Multipliers),m. We want to determine the minimum of the action functional subject to the subsidiary condition that the motion be on a given surface. The restriction in this case is, therefore, that the points . ∈ .. satisfy an equation of the form .(.) = 0, i.e. the equation of the surface.
34#
發(fā)表于 2025-3-27 10:23:22 | 只看該作者
35#
發(fā)表于 2025-3-27 16:22:09 | 只看該作者
Some Remarks on the History and Objectives of the Calculus of Variations,had developed in the previous year, and whose formal consequences he was now engaged in unravelling. Nowadays, the expression “calculus of variations”, or “variational calculus”, as it is often called, is used in a much wider sense. The subject matter of variational calculus is the mathematical form
36#
發(fā)表于 2025-3-27 18:42:47 | 只看該作者
Extrema of Differentiable Functions,ose uniqueness (in the sense of Chap. 1) have been established. It is not possible, with the theorems we proved in Chap. 1 for the existence of an extremum of a functional .: . → ?, (where . is an open subset of a Banach space .), to find those points at which this functional attains, for example, i
37#
發(fā)表于 2025-3-28 00:59:54 | 只看該作者
Constrained Minimisation Problems (Method of Lagrange Multipliers), of . subject to certain restrictions on the points . ∈ .. A well-known example from classical mechanics can be used to illustrate this type of problem. We want to determine the minimum of the action functional subject to the subsidiary condition that the motion be on a given surface. The restrictio
38#
發(fā)表于 2025-3-28 04:07:15 | 只看該作者
39#
發(fā)表于 2025-3-28 07:40:06 | 只看該作者
40#
發(fā)表于 2025-3-28 12:44:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临猗县| 鸡东县| 吴堡县| 威宁| 寿宁县| 阿鲁科尔沁旗| 宁晋县| 嘉黎县| 吉水县| 塘沽区| 沙湾县| 龙泉市| 正安县| 定州市| 竹溪县| 门头沟区| 封丘县| 喀什市| 海门市| 广水市| 桐柏县| 平江县| 阳朔县| 六枝特区| 宣武区| 鲁山县| 临朐县| 石首市| 杭州市| 拜泉县| 威海市| 菏泽市| 凌源市| 穆棱市| 萍乡市| 城步| 射洪县| 米易县| 宝兴县| 安溪县| 洞头县|