找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods for Machine Learning with Applications to Deep Networks; Lucas Pinheiro Cinelli,Matheus Araújo Marins,Sérgi Book 2021

[復(fù)制鏈接]
查看: 39190|回復(fù): 37
樓主
發(fā)表于 2025-3-21 20:02:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Variational Methods for Machine Learning with Applications to Deep Networks
編輯Lucas Pinheiro Cinelli,Matheus Araújo Marins,Sérgi
視頻videohttp://file.papertrans.cn/981/980589/980589.mp4
概述Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning.Presents Statistical Inference concepts, offering a set of elucidative examples, prac
圖書封面Titlebook: Variational Methods for Machine Learning with Applications to Deep Networks;  Lucas Pinheiro Cinelli,Matheus Araújo Marins,Sérgi Book 2021
描述This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere...Offers a concise self-contained resource, covering the basic concepts to the algo
出版日期Book 2021
關(guān)鍵詞Machine theory; Artificial intelligence; Deep neural networks; Bayesian deep learning; Bayesian neural n
版次1
doihttps://doi.org/10.1007/978-3-030-70679-1
isbn_softcover978-3-030-70681-4
isbn_ebook978-3-030-70679-1
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Variational Methods for Machine Learning with Applications to Deep Networks影響因子(影響力)




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks影響因子(影響力)學(xué)科排名




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks網(wǎng)絡(luò)公開度




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks被引頻次




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks被引頻次學(xué)科排名




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks年度引用




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks年度引用學(xué)科排名




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks讀者反饋




書目名稱Variational Methods for Machine Learning with Applications to Deep Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:34:30 | 只看該作者
http://image.papertrans.cn/v/image/980589.jpg
板凳
發(fā)表于 2025-3-22 00:32:31 | 只看該作者
地板
發(fā)表于 2025-3-22 04:51:44 | 只看該作者
5#
發(fā)表于 2025-3-22 09:03:06 | 只看該作者
Lucas Pinheiro Cinelli,Matheus Araújo Marins,SérgiOffers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning.Presents Statistical Inference concepts, offering a set of elucidative examples, prac
6#
發(fā)表于 2025-3-22 14:31:29 | 只看該作者
7#
發(fā)表于 2025-3-22 21:05:21 | 只看該作者
Lucas Pinheiro Cinelli,Matheus Araújo Marins,Eduardo Antúnio Barros da Silva,Sérgio Lima Nettobindung mit anderen Indikatoren, wie Fragen nach dem Vertrauen in politische Instanzen, der Einsch?tzung, ob man Politik versteht, der Wahlbeteiligung oder der Beteiligung an politischen Aktionen usw., ergibt sich dann ein komplexes Abbild der jeweiligen Verfassung einer politischen Kultur.
8#
發(fā)表于 2025-3-23 00:39:24 | 只看該作者
Lucas Pinheiro Cinelli,Matheus Araújo Marins,Eduardo Antúnio Barros da Silva,Sérgio Lima Nettoer erhoffte wirtschaftliche Aufschwung aus, und auch in den alten Bundesl?ndern ist das Meinungsklima zunehmend von Arbeitslosigkeit und Rezession gekennzeichnet. Aber nicht nur im ?konomischen Bereich ist die Bev?lkerung unzufrieden, auch im politischen Bereich zeigen sich Probleme: Seit der letzte
9#
發(fā)表于 2025-3-23 05:05:10 | 只看該作者
10#
發(fā)表于 2025-3-23 08:39:05 | 只看該作者
ignals of an array of microphones, as long as the signals to be extracted fulfil certain conditions [62, 63] . Wireless communications is another usual application field of signal separation techniques. In a CDMA (Code Division Multiple Access) environment several users share the same radio channel
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德格县| 广河县| 洱源县| 盐津县| 天镇县| 荣成市| 交口县| 江口县| 南雄市| 山东省| 庐江县| 贞丰县| 淮南市| 康马县| 上饶市| 罗平县| 乌拉特后旗| 建水县| 南康市| 西畴县| 卓资县| 延寿县| 张家界市| 庆安县| 建水县| 景泰县| 定远县| 富平县| 五寨县| 嘉荫县| 望奎县| 山东| 卢湾区| 万载县| 江北区| 吉木萨尔县| 巨鹿县| 忻州市| 昔阳县| 海淀区| 遵化市|