找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods for Free Surface Interfaces; Proceedings of a Con Paul Concus,Robert Finn Conference proceedings 1987 Springer-Verlag N

[復(fù)制鏈接]
樓主: Harding
51#
發(fā)表于 2025-3-30 10:42:54 | 只看該作者
,Boundary Behavior of Nonparametric Minimal Surfaces—Some Theorems and Conjectures,ept possibly at (0,0), where it might have a jump discontinuity. Then for all directions from (0,0) into ., the radial limits of . exist, where . is the solution of the minimal surface equation in . or of an equation of prescribed (bounded) mean curvature in . with . and .. Some conjectures which would generalize this result are mentioned.
52#
發(fā)表于 2025-3-30 15:10:20 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:36 | 只看該作者
54#
發(fā)表于 2025-3-30 21:33:19 | 只看該作者
55#
發(fā)表于 2025-3-31 02:31:52 | 只看該作者
56#
發(fā)表于 2025-3-31 07:26:40 | 只看該作者
On the Existence of Embedded Minimal Surfaces of Higher Genus with Free Boundaries in Riemannian MaIn this chapter we consider the following configuration: a Riemannian manifold . of bounded geometry, some closed Jordan curves Γ., and a supporting surface ?., disjoint from the Γ.. We further assume that the Γ. are contained in a suitable barrier ?. of nonnegative mean curvature (cf. §2 for details).
57#
發(fā)表于 2025-3-31 10:50:29 | 只看該作者
58#
發(fā)表于 2025-3-31 13:42:48 | 只看該作者
A Mathematical Description of Equilibrium Surfaces,The central point in many problems of mathematical physics is answering questions about the boundary of a region, using as little information as possible about the region itself.
59#
發(fā)表于 2025-3-31 20:23:42 | 只看該作者
60#
發(fā)表于 2025-4-1 00:29:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹阳市| 新昌县| 邵阳县| 洮南市| 本溪市| 罗定市| 平顶山市| 建始县| 柳州市| 乌兰浩特市| 沙洋县| 会昌县| 廉江市| 吴桥县| 西乡县| 新巴尔虎左旗| 治县。| 京山县| 贡嘎县| 兴山县| 香河县| 孝昌县| 白城市| 麦盖提县| 庆城县| 叶城县| 彩票| 榆社县| 西乡县| 潍坊市| 上饶县| 辽阳县| 怀安县| 建水县| 綦江县| 德保县| 姜堰市| 铜梁县| 正阳县| 奉新县| 五台县|