找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Approach to Hyperbolic Free Boundary Problems; Seiro Omata,Karel Svadlenka,Elliott Ginder Book 2022 The Editor(s) (if applicab

[復(fù)制鏈接]
查看: 50910|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:02:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Variational Approach to Hyperbolic Free Boundary Problems
編輯Seiro Omata,Karel Svadlenka,Elliott Ginder
視頻videohttp://file.papertrans.cn/981/980567/980567.mp4
概述Points out a new direction in the analysis of hyperbolic free boundary problems with variational structure.Treats a range of increasingly difficult problems to gradually introduce a variational approa
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Variational Approach to Hyperbolic Free Boundary Problems;  Seiro Omata,Karel Svadlenka,Elliott Ginder Book 2022 The Editor(s) (if applicab
描述This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations.?.
出版日期Book 2022
關(guān)鍵詞free boundary problem; hyperbolic type equation; variational method; numerical computationfunctional; fu
版次1
doihttps://doi.org/10.1007/978-981-19-6731-3
isbn_softcover978-981-19-6730-6
isbn_ebook978-981-19-6731-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Variational Approach to Hyperbolic Free Boundary Problems影響因子(影響力)




書目名稱Variational Approach to Hyperbolic Free Boundary Problems影響因子(影響力)學(xué)科排名




書目名稱Variational Approach to Hyperbolic Free Boundary Problems網(wǎng)絡(luò)公開度




書目名稱Variational Approach to Hyperbolic Free Boundary Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Variational Approach to Hyperbolic Free Boundary Problems被引頻次




書目名稱Variational Approach to Hyperbolic Free Boundary Problems被引頻次學(xué)科排名




書目名稱Variational Approach to Hyperbolic Free Boundary Problems年度引用




書目名稱Variational Approach to Hyperbolic Free Boundary Problems年度引用學(xué)科排名




書目名稱Variational Approach to Hyperbolic Free Boundary Problems讀者反饋




書目名稱Variational Approach to Hyperbolic Free Boundary Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:57:34 | 只看該作者
地板
發(fā)表于 2025-3-22 07:31:04 | 只看該作者
Discrete Morse Flow, analysis and numerical approximation. The approach is often called . and is a hyperbolic analogy of Rothe’s method (Math Ann 102:650–670, 1930) which is well established in the field of parabolic equations.
5#
發(fā)表于 2025-3-22 09:18:37 | 只看該作者
6#
發(fā)表于 2025-3-22 15:43:42 | 只看該作者
2191-8198 fficult problems to gradually introduce a variational approaThis volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against
7#
發(fā)表于 2025-3-22 20:12:24 | 只看該作者
Book 2022discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations.?.
8#
發(fā)表于 2025-3-22 23:51:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:24:09 | 只看該作者
10#
發(fā)表于 2025-3-23 09:00:26 | 只看該作者
https://doi.org/10.1007/978-981-19-6731-3free boundary problem; hyperbolic type equation; variational method; numerical computationfunctional; fu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿州市| 佳木斯市| 资讯 | 新营市| 博罗县| 南安市| 游戏| 荆州市| 六盘水市| 东山县| 蓬安县| 昂仁县| 克山县| 昌邑市| 胶州市| 仙居县| 汝州市| 太康县| 高要市| 镇远县| 玉龙| 玉门市| 竹北市| 彰化县| 都安| 和政县| 志丹县| 玉屏| 会同县| 汝州市| 宜兰县| 平昌县| 东山县| 和静县| 全州县| 安义县| 杂多县| 桐庐县| 罗甸县| 西城区| 定边县|