找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Value Distribution Theory and Related Topics; G. Barsegian,I. Laine,C. C. Yang Book 2004 Springer Science+Business Media New York 2004 Com

[復(fù)制鏈接]
樓主: iniquity
31#
發(fā)表于 2025-3-26 21:40:38 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:30 | 只看該作者
A New Trend in Complex Differential Equations: Quasimeromorphic Solutionsns for generalized algebraic differential equations of the first order. In particular, the classical Goldberg result that any meromorphic solution of a first order algebraic differential equation must be of finite order will been extended here to .-. solutions of first order generalized algebraic differential equations.
33#
發(fā)表于 2025-3-27 07:46:42 | 只看該作者
Recent Topics in Uniqueness Problem for Meromorphic Mappingsications to constructing problem of hyperbolic hypersurfaces in complex projective spaces. Furthermore, we give a review on some recent researches on unique range set for meromorphic functions of one complex variable.
34#
發(fā)表于 2025-3-27 09:59:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:16:24 | 只看該作者
36#
發(fā)表于 2025-3-27 19:43:58 | 只看該作者
https://doi.org/10.1007/b131070Complex analysis; Meromorphic function; Nevanlinna theory; calculus; differential equation; functional eq
37#
發(fā)表于 2025-3-28 01:58:52 | 只看該作者
978-1-4757-8018-5Springer Science+Business Media New York 2004
38#
發(fā)表于 2025-3-28 04:26:29 | 只看該作者
On Level Sets of Quasiconformal MappingsIn the present article some analogs and generalizations of the tangent variation principle are given for quasiconformal and continuously differentiable mappings.
39#
發(fā)表于 2025-3-28 09:58:01 | 只看該作者
40#
發(fā)表于 2025-3-28 12:31:14 | 只看該作者
On the Functional Equation We prove that for a generic pair (.) of polynomials . of degree . and . of degree ., where . are satisfying some conditions, . for meromorphic functions . implies ., .. We also give another proof of the statement saying that a generic polynomial of degree at least 5 is a uniqueness polynomial for meromorphic functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平远县| 运城市| 奉化市| 深水埗区| 体育| 江川县| 晋中市| 锦屏县| 武宁县| 读书| 汉中市| 荆州市| 河北区| 双柏县| 姜堰市| 克拉玛依市| 乌拉特中旗| 怀仁县| 定襄县| 济宁市| 乌兰县| 汶上县| 洪江市| 教育| 乌拉特中旗| 哈巴河县| 金塔县| 广平县| 定南县| 炉霍县| 汤阴县| 宜宾县| 邻水| 广丰县| 江川县| 双峰县| 大悟县| 新田县| 清徐县| 永康市| 福建省|