找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Value Distribution Theory and Related Topics; G. Barsegian,I. Laine,C. C. Yang Book 2004 Springer Science+Business Media New York 2004 Com

[復(fù)制鏈接]
樓主: iniquity
31#
發(fā)表于 2025-3-26 21:40:38 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:30 | 只看該作者
A New Trend in Complex Differential Equations: Quasimeromorphic Solutionsns for generalized algebraic differential equations of the first order. In particular, the classical Goldberg result that any meromorphic solution of a first order algebraic differential equation must be of finite order will been extended here to .-. solutions of first order generalized algebraic differential equations.
33#
發(fā)表于 2025-3-27 07:46:42 | 只看該作者
Recent Topics in Uniqueness Problem for Meromorphic Mappingsications to constructing problem of hyperbolic hypersurfaces in complex projective spaces. Furthermore, we give a review on some recent researches on unique range set for meromorphic functions of one complex variable.
34#
發(fā)表于 2025-3-27 09:59:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:16:24 | 只看該作者
36#
發(fā)表于 2025-3-27 19:43:58 | 只看該作者
https://doi.org/10.1007/b131070Complex analysis; Meromorphic function; Nevanlinna theory; calculus; differential equation; functional eq
37#
發(fā)表于 2025-3-28 01:58:52 | 只看該作者
978-1-4757-8018-5Springer Science+Business Media New York 2004
38#
發(fā)表于 2025-3-28 04:26:29 | 只看該作者
On Level Sets of Quasiconformal MappingsIn the present article some analogs and generalizations of the tangent variation principle are given for quasiconformal and continuously differentiable mappings.
39#
發(fā)表于 2025-3-28 09:58:01 | 只看該作者
40#
發(fā)表于 2025-3-28 12:31:14 | 只看該作者
On the Functional Equation We prove that for a generic pair (.) of polynomials . of degree . and . of degree ., where . are satisfying some conditions, . for meromorphic functions . implies ., .. We also give another proof of the statement saying that a generic polynomial of degree at least 5 is a uniqueness polynomial for meromorphic functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
越西县| 合肥市| 华容县| 巴塘县| 芒康县| 博白县| 鲜城| 黄山市| 军事| 云和县| 大足县| 阿克苏市| 杭锦后旗| 钟祥市| 罗定市| 泾阳县| 双柏县| 横山县| 雷波县| 许昌市| 安陆市| 修水县| 阜新市| 二连浩特市| 建德市| 宜兴市| 丰台区| 府谷县| 绍兴县| 定兴县| 仪陇县| 珲春市| 井陉县| 安阳市| 永靖县| 宁海县| 个旧市| 丰县| 株洲市| 南华县| 吉林省|