找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: User Modeling, Adaptation and Personalization; 22nd International C Vania Dimitrova,Tsvi Kuflik,Geert-Jan Houben Conference proceedings 201

[復制鏈接]
樓主: advocate
21#
發(fā)表于 2025-3-25 05:07:19 | 只看該作者
22#
發(fā)表于 2025-3-25 11:32:34 | 只看該作者
Predicting User Locations and Trajectoriesto a large extent routine behavior and visits to already visited locations. In this paper, we show how daily and weekly routines can be modeled with basic prediction techniques. We compare the methods based on their performance, entropy and correlation measures. Further, we discuss how location pred
23#
發(fā)表于 2025-3-25 12:19:43 | 只看該作者
A Two-Stage Item Recommendation Method Using Probabilistic Ranking with Reconstructed Tensor Modelns. Recently, few researchers have used tensor models in recommendation to represent and analyze latent relationships inherent in multi-dimensions data. A common approach is to build the tensor model, decompose it and, then, directly use the reconstructed tensor to generate the recommendation based
24#
發(fā)表于 2025-3-25 16:32:02 | 只看該作者
Time-Sensitive User Profile for Optimizing Search Personlizationeds and interests. To achieve this goal, many personalized search approaches explore user’s social Web interactions to extract his preferences and interests, and use them to model his profile. In our approach, the user profile is implicitly represented as a vector of weighted terms which correspond
25#
發(fā)表于 2025-3-25 21:50:11 | 只看該作者
26#
發(fā)表于 2025-3-26 01:39:55 | 只看該作者
27#
發(fā)表于 2025-3-26 04:46:53 | 只看該作者
Hoeffding-CF: Neighbourhood-Based Recommendations on Reliably Similar Usersown that decisions made on a naive computation of user similarity are unreliable, because the number of co-ratings varies strongly among users. In this paper, we formalize the notion of . between two users and propose a method that constructs a user’s neighbourhood by selecting only those users that
28#
發(fā)表于 2025-3-26 12:16:51 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:29 | 只看該作者
Adaptive Support versus Alternating Worked Examples and Tutored Problems: Which Leads to Better Learound that learning from examples results in faster learning in comparison to tutored problem solving in Intelligent Tutoring Systems. We present a study that compares a fixed sequence of alternating worked examples and tutored problem solving with a strategy that adaptively decides how much assistan
30#
發(fā)表于 2025-3-26 17:39:29 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
吴川市| 确山县| 鄂伦春自治旗| 台南市| 青神县| 贵州省| 屏东县| 宁海县| 于田县| 德惠市| 西宁市| 平罗县| 和平县| 东丰县| 安徽省| 淮滨县| 和平县| 台江县| 新化县| 肃南| 竹山县| 佛学| 德庆县| 佛坪县| 洛浦县| 岳西县| 枣庄市| 崇明县| 盐源县| 怀远县| 南城县| 牡丹江市| 宿州市| 大城县| 台南县| 溧阳市| 沈阳市| 衡南县| 怀化市| 阜阳市| 义乌市|