找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: User Community Discovery; Georgios Paliouras,Symeon Papadopoulos,Yiannis Kom Book 2015 Springer International Publishing Switzerland 2015

[復(fù)制鏈接]
樓主: 大腦
21#
發(fā)表于 2025-3-25 05:19:34 | 只看該作者
Community Discovery: Simple and Scalable Approaches,d/or edges while retaining the network’s underlying community structure. Finally, we review research efforts that leverage various parallel and distributed computing paradigms in community discovery, which can facilitate finding communities in tera- and peta-scale networks.
22#
發(fā)表于 2025-3-25 10:43:48 | 只看該作者
Discovering Communities in Multi-relational Networks,n, utility integration, feature integration, and partition integration. Learning or ranking the weight for each relation in MRN constitutes building blocks of network, utility and feature integrations. Thus, we turn our attention into several co-ranking frameworks on MRNs. We then discuss two differ
23#
發(fā)表于 2025-3-25 14:40:04 | 只看該作者
Group Types in Social Media,omputational sociology have provided a new lens to study social aggregations along their social and topical dimensions. Using the online photo sharing community Flickr as a main running example, we survey some techniques that have been used to get a multi-faceted description of group types and we sh
24#
發(fā)表于 2025-3-25 16:25:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:09:35 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:57 | 只看該作者
Georgios Paliouras,Symeon Papadopoulos,Dimitrios Vogiatzise of folia- tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometime
27#
發(fā)表于 2025-3-26 05:41:36 | 只看該作者
Yiye Ruan,David Fuhry,Jiongqian Liang,Yu Wang,Srinivasan Parthasarathyries. Such passages are inserted between *. In most textbooks about Riemannian geometry, the starting point is the local theory of embedded surfaces. Here we begin directly with the so-called "abstract" manifolds. To illustrate our point of view, a series of examples is developed each time a new def
28#
發(fā)表于 2025-3-26 10:32:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:10:41 | 只看該作者
nd trajectories can also have important geometric features, we use shape as an all-encompassing term for the descriptors of curves, scalar functions and trajectories. Our framework relies on functional representation and analysis of curves and scalar functions, by square-root velocity fields (SRVF)
30#
發(fā)表于 2025-3-26 19:14:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郴州市| 花莲市| 丰台区| 同江市| 色达县| 临西县| 元谋县| 涪陵区| 青岛市| 大兴区| 扬州市| 时尚| 会泽县| 武平县| 化隆| 叶城县| 通江县| 平泉县| 筠连县| 惠安县| 应用必备| 奉节县| 福安市| 黔西县| 栖霞市| 太白县| 泰和县| 剑川县| 漠河县| 石城县| 鹤壁市| 马尔康县| 忻州市| 濮阳市| 红原县| 贵州省| 六盘水市| 新民市| 青州市| 高密市| 扬中市|