找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions; Frank Oertel Book 2024 The Editor(s) (if applicab

[復(fù)制鏈接]
查看: 44624|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:46:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions
編輯Frank Oertel
視頻videohttp://file.papertrans.cn/944/943804/943804.mp4
概述Illuminates in detail a still open question in mathematics.Highlights ideas which will lead to new, long-term research projects.Reveals surprising links to neighbouring fields, including quantum infor
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions;  Frank Oertel Book 2024 The Editor(s) (if applicab
描述This book concentrates on the famous Grothendieck inequality and the continued search for the still unknown best possible value of the real and complex Grothendieck constant (an open problem since 1953). It describes in detail the state of the art in research on this fundamental inequality, including Krivine‘s recent contributions, and sheds light on related questions in mathematics, physics and computer science, particularly with respect to the foundations of quantum theory and quantum information theory. Unifying the real and complex cases as much as possible, the monograph introduces the reader to a rich collection of results in functional analysis and probability. In particular, it includes a detailed, self-contained analysis of the multivariate distribution of complex Gaussian random vectors. The notion of Completely Correlation Preserving (CCP) functions plays a particularly important role in the exposition..The prerequisites are a basic knowledge of standard functional analysis, complex analysis, probability, optimisation and some number theory and combinatorics. However, readers missing some background will be able to consult the generous bibliography, which contains numero
出版日期Book 2024
關(guān)鍵詞Grothendieck Inequality; Grothendieck Constants; Completely Correlation Preserving Functions; Schoenber
版次1
doihttps://doi.org/10.1007/978-3-031-57201-2
isbn_softcover978-3-031-57200-5
isbn_ebook978-3-031-57201-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions影響因子(影響力)




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions影響因子(影響力)學(xué)科排名




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions網(wǎng)絡(luò)公開度




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions被引頻次




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions被引頻次學(xué)科排名




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions年度引用




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions年度引用學(xué)科排名




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions讀者反饋




書目名稱Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:02:58 | 只看該作者
978-3-031-57200-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 06:16:14 | 只看該作者
5#
發(fā)表于 2025-3-22 10:01:52 | 只看該作者
6#
發(fā)表于 2025-3-22 15:37:22 | 只看該作者
7#
發(fā)表于 2025-3-22 18:59:06 | 只看該作者
A Summary Scheme of the Main Result,The most important results from the previous chapters are summarised in this chapter. We list in detail the single steps and assumptions in the form of a “flowchart”, possibly leading to a computer-aided approach regarding the implementation of an approximation to the lowest upper bound of the real and complex Grothendieck constant.
8#
發(fā)表于 2025-3-23 00:05:30 | 只看該作者
Concluding Remarks and Open Problems,In this chapter, we present open problems which naturally emerge from our approach, including unsolved problems induced by the large combinatorial complexity which is subject to the implementation of Taylor series inversion.
9#
發(fā)表于 2025-3-23 04:59:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:10:36 | 只看該作者
Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 13:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼玛县| 灵山县| 图木舒克市| 渝中区| 承德县| 花垣县| 澄江县| 宝山区| 清原| 称多县| 赤壁市| 交城县| 彭水| 安乡县| 海淀区| 荥经县| 桐庐县| 斗六市| 商丘市| 甘泉县| 广丰县| 贡觉县| 琼中| 定边县| 湾仔区| 新闻| 郁南县| 吉林省| 广丰县| 循化| 江山市| 上犹县| 绿春县| 恩平市| 冀州市| 湘潭市| 舟曲县| 乐安县| 柞水县| 陕西省| 察隅县|