找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unvollst?ndigkeit und Unentscheidbarkeit; Die metamathematisch Wolfgang Stegmüller Book 19591st edition Springer-Verlag Wien 1959 Beweis.En

[復(fù)制鏈接]
樓主: affidavit
11#
發(fā)表于 2025-3-23 13:42:02 | 只看該作者
12#
發(fā)表于 2025-3-23 17:40:54 | 只看該作者
13#
發(fā)表于 2025-3-23 18:59:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:43:02 | 只看該作者
15#
發(fā)表于 2025-3-24 04:10:12 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:16 | 只看該作者
17#
發(fā)表于 2025-3-24 14:11:11 | 只看該作者
Einleitung,d viele der innerhalb der Metamathematik gewonnenen Ergebnisse von einer so au?erordentlichen theoretischen Bedeutung und Tragweite, da? deren genaues Studium für jeden, der erkenntnistheoretische Untersuchungen betreiben will, welche auf der H?he der Zeit stehen, ganz unerl??lich ist. Durch jene Er
18#
發(fā)表于 2025-3-24 16:38:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:39:52 | 只看該作者
,Die G?delschen Theoreme,n. Dieses formale System bildet im Rahmen metamathematischer Untersuchungen den Gegenstand der Betrachtung und wird daher auch . genannt. Die Sprache, in welcher über die Objektsprache gesprochen wird, hei?t .. In der Metasprache werden die Regeln angegeben, durch welche die Objektsprache überhaupt
20#
發(fā)表于 2025-3-25 02:16:22 | 只看該作者
Die Unentscheidbarkeit der Quantifikationstheorie (Theorem von Church),(Pr?dikatenlogik der ersten Stufe) ist, oder was damit ?quivalent ist : ob diese Formel im quantifikatorischen (pr?dikatenlogischen) Sinn gültig ist.. Da die Quantifikationstheorie zur Logik im engeren Sinne geh?rt und die Existenz eines effektiven Verfahrens zur L?sung von bestimmten Problemen ?qui
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涞源县| 衡阳市| 中西区| 西青区| 北京市| 基隆市| 广元市| 蓝山县| 安丘市| 连城县| 临猗县| 广昌县| 平泉县| 绥化市| 图片| 长乐市| 仁怀市| 永安市| 宁夏| 四子王旗| 大荔县| 新乐市| 兰考县| 洛宁县| 辰溪县| 清远市| 大足县| 留坝县| 三原县| 垣曲县| 乌苏市| 昆明市| 宜宾市| 航空| 犍为县| 秭归县| 文水县| 临夏县| 吉水县| 漳平市| 辽阳市|