找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unverg?ngliche Geometrie; H. S. M. Coxeter Book 1981Latest edition Birkh?user Basel 1981 Geometrie.Mathematik

[復(fù)制鏈接]
樓主: 撕成碎片
21#
發(fā)表于 2025-3-25 05:08:12 | 只看該作者
22#
發(fā)表于 2025-3-25 08:13:23 | 只看該作者
23#
發(fā)表于 2025-3-25 13:52:50 | 只看該作者
24#
發(fā)表于 2025-3-25 15:49:33 | 只看該作者
Zweidimensionale Kristallographieer Streifenmuster aus § 3.7 auf. Jedoch ist es trotz der Beschr?nkung auf zwei Dimensionen im Rahmen dieses Buches nicht m?glich, eine vollst?ndige Aufz?hlung dieser unendlichen Symmetriegruppen zu geben.
25#
發(fā)表于 2025-3-26 00:04:27 | 只看該作者
Kreise und Kugelnreise und Kugeln von unendlichem Radius sind, durch die wissenschaftliche Aussage, da? Geraden und Ebenen diejenigen Kreise und Kugeln sind, die durch einen . Punkt, genannt der . Punkt, gehen, fixiert werden kann. In § 6.9 werden wir kurz eine noch ungew?hnliche Geometrie, die . genannt, besprechen; sie ist die eine der berühmten . Geometrien.
26#
發(fā)表于 2025-3-26 01:20:09 | 只看該作者
Bewegung und ?hnlichkeit im Euklidischen Raumeis des bekannten kinematischen Satzes, wonach jede eigentliche Bewegung eine Schraubung ist. In § 7.6 sehen wir, da? jede ?hnlichkeit (mit Ausnahme der Schraubung und der Gleitspiegelung, die keinen Fixpunkt besitzen) als Sonderfall einer dreidimensionalen . angesehen werden kann.
27#
發(fā)表于 2025-3-26 07:10:56 | 只看該作者
28#
發(fā)表于 2025-3-26 11:51:14 | 只看該作者
Affine Geometrie7 untersuchen wir Fl?chen, affine Transformationen, Gitter, Vektoren, baryzentrische Koordinaten und die S?tze von Ce va und Menelaus. In § 13.8 und § 13.9 erweitern wir diese Ideen von zwei auf drei Dimensionen.
29#
發(fā)表于 2025-3-26 16:42:12 | 只看該作者
30#
發(fā)表于 2025-3-26 20:15:32 | 只看該作者
Differentialgeometrie der Kurvenoder der projektive Raum benützt. Die Differentialgeometrie beh?lt also ihre Bedeutung, auch wenn von Abstand nicht gesprochen werden kann. Jedoch sind meistens Abstand und Parallelismus vorhanden, soda? der Begriff des Vektors grundlegend ist.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 01:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
策勒县| 兴化市| 蒙城县| 夏邑县| 泽库县| 二连浩特市| 阿克| 滕州市| 诏安县| 玉山县| 长沙市| 哈巴河县| 临海市| 大庆市| 天柱县| 特克斯县| 岳池县| 东方市| 理塘县| 界首市| 武安市| 焦作市| 格尔木市| 海南省| 当雄县| 沐川县| 淅川县| 奉新县| 金门县| 蕉岭县| 茌平县| 岫岩| 交口县| 招远市| 涞水县| 安化县| 维西| 富宁县| 永新县| 峨眉山市| 青铜峡市|