找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Unsupervised Domain Adaptation; Recent Advances and Jingjing Li,Lei Zhu,Zhekai Du Book 2024 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 37890|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:17:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Unsupervised Domain Adaptation
副標(biāo)題Recent Advances and
編輯Jingjing Li,Lei Zhu,Zhekai Du
視頻videohttp://file.papertrans.cn/943/942522/942522.mp4
概述Covers not only conventional domain adaptation, but also source-free domain adaptation and active domain adaptation.Presents unique methods to approach domain adaptation from novel perspectives, which
叢書(shū)名稱(chēng)Machine Learning: Foundations, Methodologies, and Applications
圖書(shū)封面Titlebook: Unsupervised Domain Adaptation; Recent Advances and  Jingjing Li,Lei Zhu,Zhekai Du Book 2024 The Editor(s) (if applicable) and The Author(s
描述.Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention from the research community due to its applicability in various real-world scenarios. This book provides a comprehensive review of state-of-the-art UDA methods and explores new variants of UDA that have the potential to advance the field...The book begins with a clear introduction to the UDA problem and is mainly organized into four technical sections, each focused on a specific piece of UDA research. The first section covers criterion optimization-based UDA, which aims to learn domain-invariant representations by minimizing the discrepancy between source and target domains. The second section discusses bi-classifier adversarial learning-based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents act
出版日期Book 2024
關(guān)鍵詞Transfer Learning; Adversarial Learning; Source-Free Domain adaptation; Active Domain Adaptation; Unsupe
版次1
doihttps://doi.org/10.1007/978-981-97-1025-6
isbn_softcover978-981-97-1027-0
isbn_ebook978-981-97-1025-6Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱(chēng)Unsupervised Domain Adaptation影響因子(影響力)




書(shū)目名稱(chēng)Unsupervised Domain Adaptation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Unsupervised Domain Adaptation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Unsupervised Domain Adaptation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Unsupervised Domain Adaptation被引頻次




書(shū)目名稱(chēng)Unsupervised Domain Adaptation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Unsupervised Domain Adaptation年度引用




書(shū)目名稱(chēng)Unsupervised Domain Adaptation年度引用學(xué)科排名




書(shū)目名稱(chēng)Unsupervised Domain Adaptation讀者反饋




書(shū)目名稱(chēng)Unsupervised Domain Adaptation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:13:04 | 只看該作者
Machine Learning: Foundations, Methodologies, and Applicationshttp://image.papertrans.cn/u/image/942522.jpg
地板
發(fā)表于 2025-3-22 06:02:16 | 只看該作者
https://doi.org/10.1007/978-981-97-1025-6Transfer Learning; Adversarial Learning; Source-Free Domain adaptation; Active Domain Adaptation; Unsupe
5#
發(fā)表于 2025-3-22 11:58:33 | 只看該作者
6#
發(fā)表于 2025-3-22 13:48:05 | 只看該作者
Jingjing Li,Lei Zhu,Zhekai DuCovers not only conventional domain adaptation, but also source-free domain adaptation and active domain adaptation.Presents unique methods to approach domain adaptation from novel perspectives, which
7#
發(fā)表于 2025-3-22 18:49:20 | 只看該作者
8#
發(fā)表于 2025-3-22 22:25:16 | 只看該作者
2730-9908 tween the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents act978-981-97-1027-0978-981-97-1025-6Series ISSN 2730-9908 Series E-ISSN 2730-9916
9#
發(fā)表于 2025-3-23 02:53:32 | 只看該作者
Bi-Classifier Adversarial Learning-Based Unsupervised Domain Adaptation,er focuses on preserving target decision boundaries. Experiments on several domain adaptation benchmarks demonstrate the efficacy of both CGDM and uneven bi-classifier learning in boosting adaptation performance.
10#
發(fā)表于 2025-3-23 07:50:25 | 只看該作者
Source-Free Unsupervised Domain Adaptation,ameter sharing further reduces the number of learnable parameters for efficient adaptation. Model perturbation avoids distorting weights like fine-tuning and is more flexible than only updating batch normalization statistics. Experiments demonstrate the effectiveness of both data and model perturbat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荣昌县| 东港市| 界首市| 那坡县| 福安市| 景东| 洪雅县| 台州市| 潼南县| 龙井市| 遂昌县| 星子县| 德安县| 巴彦淖尔市| 南乐县| 石屏县| 司法| 佳木斯市| 黄平县| 延边| 睢宁县| 衢州市| 普格县| 青州市| 郎溪县| 册亨县| 东丰县| 绵阳市| 双流县| 峨山| 浮梁县| 太湖县| 仁怀市| 夏河县| 霍林郭勒市| 沁阳市| 耒阳市| 成武县| 陕西省| 河津市| 湖州市|