找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unstable Systems; Lawrence Horwitz,Yosef Strauss Book 2020 Springer Nature Switzerland AG 2020 unstable quantum system.Gamow approach.Wign

[復制鏈接]
查看: 29053|回復: 39
樓主
發(fā)表于 2025-3-21 18:02:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Unstable Systems
編輯Lawrence Horwitz,Yosef Strauss
視頻videohttp://file.papertrans.cn/943/942507/942507.mp4
概述Addresses unstable systems from the classical and the quantum point of view providing a deeper level of understanding.Extends the work of Lax and Phillips for classical wave systems to quantum systems
叢書名稱Mathematical Physics Studies
圖書封面Titlebook: Unstable Systems;  Lawrence Horwitz,Yosef Strauss Book 2020 Springer Nature Switzerland AG 2020 unstable quantum system.Gamow approach.Wign
描述.This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here?the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum? mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias?and its more general extension to approximate semigroup evolution is explained..The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior.?It is? then shown that,?in the framework of??the theory of symplectic?manifolds, there is a systematic?algorithm for the construction of a canonical transformation?of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for?stability analysis in?a wide range of applications..
出版日期Book 2020
關(guān)鍵詞unstable quantum system; Gamow approach; Wigner-Weisskopf formulation; rigged Hilbert spaces; Gel‘fand t
版次1
doihttps://doi.org/10.1007/978-3-030-31570-2
isbn_softcover978-3-030-31572-6
isbn_ebook978-3-030-31570-2Series ISSN 0921-3767 Series E-ISSN 2352-3905
issn_series 0921-3767
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Unstable Systems影響因子(影響力)




書目名稱Unstable Systems影響因子(影響力)學科排名




書目名稱Unstable Systems網(wǎng)絡(luò)公開度




書目名稱Unstable Systems網(wǎng)絡(luò)公開度學科排名




書目名稱Unstable Systems被引頻次




書目名稱Unstable Systems被引頻次學科排名




書目名稱Unstable Systems年度引用




書目名稱Unstable Systems年度引用學科排名




書目名稱Unstable Systems讀者反饋




書目名稱Unstable Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:04:05 | 只看該作者
978-3-030-31572-6Springer Nature Switzerland AG 2020
地板
發(fā)表于 2025-3-22 04:33:21 | 只看該作者
5#
發(fā)表于 2025-3-22 11:03:17 | 只看該作者
Quantization of Geodesic Deviation,The Hamilton equations for Hamiltonian systems of the type discussed, for example, by Gutzwiller (Gutzwiller 1990) and Curtiss and Miller (Curtiss and Miller 1985), with Hamiltonian of the form.
6#
發(fā)表于 2025-3-22 13:41:54 | 只看該作者
Classical Hamiltonian Instability,In this chapter we show that the characterization of unstable Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in terms of the structure of a geometric type Hamiltonian?can be applied to a wide class of potential?models of standard form through definition of a conformal metric.
7#
發(fā)表于 2025-3-22 19:40:34 | 只看該作者
8#
發(fā)表于 2025-3-22 21:42:58 | 只看該作者
Lawrence Horwitz,Yosef StraussAddresses unstable systems from the classical and the quantum point of view providing a deeper level of understanding.Extends the work of Lax and Phillips for classical wave systems to quantum systems
9#
發(fā)表于 2025-3-23 02:16:06 | 只看該作者
10#
發(fā)表于 2025-3-23 06:04:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泰宁县| 南开区| 环江| 长葛市| 湖口县| 潍坊市| 抚松县| 赤城县| 尼玛县| 巴里| 搜索| 栾城县| 奎屯市| 乐至县| 青阳县| 邮箱| 修武县| 彰武县| 海南省| 凤阳县| 景洪市| 兰溪市| 织金县| 翁牛特旗| 泽州县| 醴陵市| 青海省| 晴隆县| 东城区| 沧源| 托克托县| 乐至县| 永仁县| 西和县| 开原市| 逊克县| 镇平县| 广宁县| 皮山县| 伊金霍洛旗| 壶关县|