找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unsolved Problems in Number Theory; Richard K. Guy Textbook 2004Latest edition Springer Science+Business Media New York 2004 Mersenne prim

[復(fù)制鏈接]
查看: 36548|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:56:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Unsolved Problems in Number Theory
編輯Richard K. Guy
視頻videohttp://file.papertrans.cn/943/942496/942496.mp4
概述Includes supplementary material:
叢書名稱Problem Books in Mathematics
圖書封面Titlebook: Unsolved Problems in Number Theory;  Richard K. Guy Textbook 2004Latest edition Springer Science+Business Media New York 2004 Mersenne prim
描述.Mathematics is kept alive by the appearance of new unsolved problems, problems posed from within mathematics itself, and also from the increasing number of disciplines where mathematics is applied.?This book provides a steady supply of easily understood, if not easily solved, problems which can be considered in varying depths by mathematicians at all levels of mathematical maturity..For this new edition, the author has included new problems on symmetric and asymmetric primes, sums of higher powers, Diophantine m-tuples, and Conway‘s RATS and palindromes.?The author has also included a useful new feature at the end of several of the sections: lists of references to OEIS, Neil Sloane‘s Online Encyclopedia of Integer Sequences..About the first Edition:."...many talented young mathematicians will write their first papers starting out from problems found in this book."?.András Sárk?zi, MathSciNet.
出版日期Textbook 2004Latest edition
關(guān)鍵詞Mersenne prime; Prime; Prime number; Zahlentheorie; number theory
版次3
doihttps://doi.org/10.1007/978-0-387-26677-0
isbn_softcover978-1-4419-1928-1
isbn_ebook978-0-387-26677-0Series ISSN 0941-3502 Series E-ISSN 2197-8506
issn_series 0941-3502
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書目名稱Unsolved Problems in Number Theory影響因子(影響力)




書目名稱Unsolved Problems in Number Theory影響因子(影響力)學(xué)科排名




書目名稱Unsolved Problems in Number Theory網(wǎng)絡(luò)公開度




書目名稱Unsolved Problems in Number Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Unsolved Problems in Number Theory被引頻次




書目名稱Unsolved Problems in Number Theory被引頻次學(xué)科排名




書目名稱Unsolved Problems in Number Theory年度引用




書目名稱Unsolved Problems in Number Theory年度引用學(xué)科排名




書目名稱Unsolved Problems in Number Theory讀者反饋




書目名稱Unsolved Problems in Number Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:35 | 只看該作者
Divisibility,) = .(.) and ..(.) = .(.). We use .(.) for the sum of the . of ., i.e., the positive divisors of . other than . itself, so that .(.) = .(.) - .. The number of distinct prime factors of . will be denoted by .(.) and the total number, counting repetitions, by Ω(.).
板凳
發(fā)表于 2025-3-22 02:40:53 | 只看該作者
地板
發(fā)表于 2025-3-22 08:37:55 | 只看該作者
5#
發(fā)表于 2025-3-22 09:38:55 | 只看該作者
Textbook 2004Latest editionber of disciplines where mathematics is applied.?This book provides a steady supply of easily understood, if not easily solved, problems which can be considered in varying depths by mathematicians at all levels of mathematical maturity..For this new edition, the author has included new problems on s
6#
發(fā)表于 2025-3-22 13:32:34 | 只看該作者
0941-3502 cs itself, and also from the increasing number of disciplines where mathematics is applied.?This book provides a steady supply of easily understood, if not easily solved, problems which can be considered in varying depths by mathematicians at all levels of mathematical maturity..For this new edition
7#
發(fā)表于 2025-3-22 18:46:59 | 只看該作者
Additive Number Theory,greater than . is the sum of . primes and Chen Jing-Run has shown that all large enough even numbers are the sum of a prime and the product of at most two primes. Wang & Chen have reduced the number . to .. ≈ 3.23274 × 10. under the assumption of the generalized Riemann hypothesis.
8#
發(fā)表于 2025-3-22 22:47:13 | 只看該作者
Diophantine Equations,her with a great number of unsolved problems. There are well-developed theories of rational points on algebraic curves, so we mainly confine ourselves to higher dimensions, for which standard methods have not yet been developed.
9#
發(fā)表于 2025-3-23 03:32:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:23:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 19:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉田县| 弥渡县| 仁布县| 广州市| 新巴尔虎右旗| 宿松县| 东山县| 泽普县| 昭觉县| 乐清市| 伊宁市| 灌云县| 榆中县| 卓资县| 兰考县| 玛纳斯县| 清新县| 固原市| 民权县| 景洪市| 关岭| 开原市| 河源市| 麟游县| 宣化县| 方正县| 长沙县| 金堂县| 靖远县| 保定市| 四会市| 美姑县| 楚雄市| 保山市| 富蕴县| 南溪县| 石城县| 峡江县| 福安市| 鄂托克前旗| 沈阳市|