找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Universit?re Bildungskooperationen; Gestaltungsvarianten Svenja Hagenhoff Book 2002 Deutscher Universit?ts-Verlag GmbH, Wiesbaden 2002 Bild

[復制鏈接]
樓主: IU421
21#
發(fā)表于 2025-3-25 03:32:50 | 只看該作者
22#
發(fā)表于 2025-3-25 11:09:31 | 只看該作者
Svenja Hagenhofft just stated and illustrated by examples and corollaries. In this way, the reader is guided rather quickly from the basic theory to current research questions,978-3-540-20665-1978-3-642-18868-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
23#
發(fā)表于 2025-3-25 14:37:03 | 只看該作者
24#
發(fā)表于 2025-3-25 16:42:50 | 只看該作者
Svenja Hagenhoffess of the boundary layer in the computational space nearly constant. In two-dimensional laminar boundary-layer predictions similarity-type, such as Blasius or Levy-Lees, transformations generally achieve the desired goal. In turbulent boundary layers the advantage of such transformations is not ent
25#
發(fā)表于 2025-3-25 22:24:52 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:58 | 只看該作者
27#
發(fā)表于 2025-3-26 04:42:31 | 只看該作者
Svenja Hagenhoffsurface as a part of high-frequency acoustic experiments. Relatively undisturbed cores up to 50 cm long were collected by divers from medium sand, fine sand, and mud. Values of permeability, porosity, and grain size in addition to compressional and shear wave velocities were determined in the labora
28#
發(fā)表于 2025-3-26 09:08:38 | 只看該作者
Svenja Hagenhoffometrical idea due to R. Thom and H. Whitney. These sheaves, generalizing the local systems that are so ubiquitous in mathematics, have powerful applications to the topology of such singular spaces (mainly algebraic and analytic complex varieties)...This introduction to the subject can be regarded a
29#
發(fā)表于 2025-3-26 16:02:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:25:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
金山区| 辽宁省| 彭水| 乐安县| 应用必备| 德令哈市| 舒兰市| 梁平县| 缙云县| 泗水县| 郁南县| 会宁县| 绥中县| 高唐县| 南郑县| 吐鲁番市| 东宁县| 定陶县| 东至县| 鹿泉市| 苍溪县| 玉山县| 麻城市| 乌兰察布市| 荥阳市| 江西省| 兰坪| 巫溪县| 白城市| 乌鲁木齐市| 澄江县| 元阳县| 桐乡市| 阳信县| 织金县| 平顶山市| 丰镇市| 确山县| 上杭县| 望城县| 鹿泉市|