找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Universalizability; A Study in Morals an W?odzimierz Rabinowicz Book 1979 D. Reidel Publishing Company, Dordrecht, Holland 1979 15th centur

[復(fù)制鏈接]
樓主: HAG
11#
發(fā)表于 2025-3-23 13:23:06 | 只看該作者
Extensions of Leibnizianismse of this condition trivially follows from any variant of D 10.3. Before we start searching for such extensions of Leibnizianism, let us recall that Leibnizianism, taken by itself, is fully compatible with the negation of (.). This is shown by our Example E in section 10.3.
12#
發(fā)表于 2025-3-23 17:12:13 | 只看該作者
13#
發(fā)表于 2025-3-23 19:03:16 | 只看該作者
QuestionsLet . be any dyadic relation on .. By (ue) we shall understand the condition which results from (u) when all the occurrences of ‘.’ in (u) have been replaced by ‘.’. Consider, now, the following conditions:
14#
發(fā)表于 2025-3-24 01:28:59 | 只看該作者
AnswersLet . be any dyadic relation. In the next chapter, we shall prove that the following principle is the . universalistic condition on . and ..
15#
發(fā)表于 2025-3-24 03:09:19 | 只看該作者
FormalitiesWe assume that . can be.. That is, there exists a dyadic relation . on . such that . is transitive, anti-symmetric and connected, and, for every non-empty X subseteq W,{ ext{ X contains some }}w{ ext{ such that, for every }}upsilonin X,wSupsilon .
16#
發(fā)表于 2025-3-24 07:52:58 | 只看該作者
17#
發(fā)表于 2025-3-24 11:42:04 | 只看該作者
Morality Without PurityLet us recall our formulation of the Principle of Universalizability in terms of the concept of automorphism and the relation .:. stays invariant under automorphisms.
18#
發(fā)表于 2025-3-24 17:43:29 | 只看該作者
The Universalizability DilemmaAnyone who discusses the problem of universalizability must, sooner or later, consider the following difficulty:
19#
發(fā)表于 2025-3-24 20:17:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:11:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 01:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤原县| 五常市| 丹棱县| 漳浦县| 通江县| 运城市| 滦南县| 富蕴县| 绥江县| 红桥区| 金乡县| 安吉县| 万州区| 西青区| 南和县| 汉沽区| 廊坊市| 寿宁县| 鲁甸县| 且末县| 卓尼县| 枞阳县| 方城县| 南宫市| 逊克县| 邢台县| 格尔木市| 闵行区| 缙云县| 贵溪市| 眉山市| 霍邱县| 凤山县| 剑阁县| 务川| 巴彦县| 新竹县| 南木林县| 海兴县| 红河县| 漳州市|