找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Univalent Functions and Teichmüller Spaces; Olli Lehto Textbook 19871st edition Springer-Verlag New York Inc. 1987 Jacobi.Meromorphic func

[復(fù)制鏈接]
樓主: calcification
21#
發(fā)表于 2025-3-25 07:15:24 | 只看該作者
22#
發(fā)表于 2025-3-25 11:28:00 | 只看該作者
23#
發(fā)表于 2025-3-25 14:02:52 | 只看該作者
24#
發(fā)表于 2025-3-25 17:50:56 | 只看該作者
25#
發(fā)表于 2025-3-25 22:52:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:57:48 | 只看該作者
Univalent Functions,are directly or indirectly connected with Teichmüller theory. The interaction between univalent functions and Teichmüller spaces was already explained briefly in the Introduction to this monograph. A more comprehensive description is provided by Chapters II, III, and V, taken together.
27#
發(fā)表于 2025-3-26 05:20:08 | 只看該作者
,Universal Teichmüller Space, a space of Schwarzian derivatives. In the general case, the Schwarzians in question are holomorphic quadratic differentials for a group of M?bius transformations (see V.4). The universal Teichmüller space corresponds to the situation in which the group is trivial. The Schwarzians are then just holo
28#
發(fā)表于 2025-3-26 11:01:47 | 只看該作者
Riemann Surfaces,hapter in which we have collected the material on Riemann surfaces that will come into play in Chapter V. A brief survey of the general theory of Riemann surfaces is given in sections 1–3 and of groups of M?bius transformations in section 4. We have occasionally lingered on some topics slightly long
29#
發(fā)表于 2025-3-26 12:39:09 | 只看該作者
Riemann Surfaces,ann surfaces is given in sections 1–3 and of groups of M?bius transformations in section 4. We have occasionally lingered on some topics slightly longer than would be strictly necessary for later needs, in order to provide the reader with a broader background.
30#
發(fā)表于 2025-3-26 17:25:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉山| 辰溪县| 左云县| 北京市| 措美县| 盐城市| 乌鲁木齐县| 浑源县| 龙山县| 浪卡子县| 雅江县| 三门县| 滦平县| 海口市| 神池县| 大理市| 永嘉县| 和静县| 浮梁县| 长武县| 卓资县| 三亚市| 丘北县| 灵寿县| 武平县| 安化县| 靖远县| 义乌市| 临夏市| 浑源县| 阿图什市| 宜阳县| 正阳县| 武城县| 仙居县| 卓资县| 五寨县| 东辽县| 衢州市| 子洲县| 得荣县|