找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Unification of Fractional Calculi with Applications; George A. Anastassiou Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: ISH
21#
發(fā)表于 2025-3-25 04:00:12 | 只看該作者
Vectorial Advanced Hilfer-Prabhakar-Hardy Fractional Inequalities,We present a variety of univariate and multivariate left and right side Hardy type fractional inequalities, many of them under convexity, and other also of . type, ., in the setting of generalized Hilfer and Prabhakar fractional Calculi.
22#
發(fā)表于 2025-3-25 10:46:56 | 只看該作者
Vectorial Prabhakar Hardy Advanced Fractional Inequalities Under Convexity,We present a detailed great variety of Hardy type fractional inequalities under convexity and . norm in the setting of generalized Prabhakar and Hilfer fractional calculi of left and right integrals and derivatives.
23#
發(fā)表于 2025-3-25 12:59:28 | 只看該作者
24#
發(fā)表于 2025-3-25 16:35:11 | 只看該作者
Non Singular Kernel Multiparameter Fractional Differentiation,We introduce here Caputo and Riemann-Liouville type non singular kernel very general multi parameter left and right side fractional derivatives and we prove their continuity.
25#
發(fā)表于 2025-3-25 21:35:50 | 只看該作者
26#
發(fā)表于 2025-3-26 02:57:42 | 只看該作者
Exotic Fractional Integral Inequalities,Here we present a thorough collection of Opial and Hardy type fractional inequalities involving also convexity, based on Luchko’s generalized fractional calculus, and Prabhakar’s partial and mixed of variable degree multivariate fractional integrals.
27#
發(fā)表于 2025-3-26 07:39:52 | 只看該作者
28#
發(fā)表于 2025-3-26 10:42:16 | 只看該作者
Conclusion,During the last 50 years fractional calculus due to its wide applications to many applied sciences has become a main trend in mathematics. Its predominant kinds are the old Riemann-Liouville fractional calculus and the newer one of Caputo type.
29#
發(fā)表于 2025-3-26 14:47:11 | 只看該作者
30#
發(fā)表于 2025-3-26 20:26:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南城县| 无为县| 临邑县| SHOW| 开原市| 潞城市| 韩城市| 凤阳县| 洞口县| 云龙县| 昌宁县| 郯城县| 阳江市| 吉林市| 彭水| 晋中市| 二手房| 班玛县| 铜鼓县| 乌兰察布市| 米易县| 石狮市| 什邡市| 汉寿县| 万山特区| 雅安市| 德惠市| 逊克县| 海丰县| 东港市| 罗甸县| 武冈市| 青州市| 高尔夫| 蓝田县| 中牟县| 楚雄市| 石楼县| 娄底市| 吉木萨尔县| 漳平市|