找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Unendliche Reihen; H.-J. Schell Textbook 1974Latest edition Springer Fachmedien Wiesbaden 1974 Fourier-Reihe.Fourierintegral.Funktionen.Fu

[復(fù)制鏈接]
樓主: FLAK
11#
發(fā)表于 2025-3-23 09:58:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:49:37 | 只看該作者
13#
發(fā)表于 2025-3-23 21:02:17 | 只看該作者
14#
發(fā)表于 2025-3-23 22:38:41 | 只看該作者
0138-1318 Overview: 978-3-322-00408-6978-3-663-11687-5Series ISSN 0138-1318
15#
發(fā)表于 2025-3-24 04:20:03 | 只看該作者
Zum Gegenstand und zur Bedeutung unendlicher Reihen,tlung ihrer Summen (im Konvergenzfall) und den Rechenoperationen mit unendlichen Reihen. Ihre Anwendungen erstrecken sich auf nahezu alle Teile der Analysis. Viele Untersuchungen werden durch Heranziehung unendlicher Reihen wesentlich vereinfacht oder überhaupt erst erm?glicht.
16#
發(fā)表于 2025-3-24 06:35:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:26:49 | 只看該作者
18#
發(fā)表于 2025-3-24 18:54:43 | 只看該作者
19#
發(fā)表于 2025-3-24 19:47:19 | 只看該作者
Fourierreihen,in kleines Stück aus dieser Lage verschoben wird, so wirkt auf ihn eine rücktreibende Kraft. H?ufig kann angenommen werden, da? sie proportional zur jeweiligen Entfernung . von der Gleichgewichtslage und zu dieser hin gerichtet ist. Nach dem Newtonschen Reaktionsprinzip besteht daher bei Vernachl?ss
20#
發(fā)表于 2025-3-25 02:46:37 | 只看該作者
Fourierintegrale, Intervall definiert sind, die man sich jedoch über dieses hinaus periodisch fortgesetzt denken kann). Im folgenden wird angedeutet, wie man durch Verallgemeinerung der Ergebnisse über Fourierreihen zu einer Darstellung einer in einem unendlichen Intervall definierten, nicht-periodischen Funktion ge
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通海县| 吴桥县| 石城县| 吉首市| 潞西市| 永新县| 宁安市| 桐柏县| 涞源县| 富锦市| 金华市| 温宿县| 金溪县| 邵阳县| 罗田县| 绥化市| 扎鲁特旗| 辉县市| 蓬安县| 西宁市| 城固县| 独山县| 贡嘎县| 三门峡市| 彭山县| 舒城县| 景宁| 柞水县| 桐城市| 定兴县| 定边县| 株洲县| 象山县| 巍山| 汝阳县| 琼中| 嘉荫县| 衡山县| 德昌县| 晋中市| 辉南县|