找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Unendliche Reihen; H.-J. Schell Textbook 1974Latest edition Springer Fachmedien Wiesbaden 1974 Fourier-Reihe.Fourierintegral.Funktionen.Fu

[復(fù)制鏈接]
樓主: FLAK
11#
發(fā)表于 2025-3-23 09:58:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:49:37 | 只看該作者
13#
發(fā)表于 2025-3-23 21:02:17 | 只看該作者
14#
發(fā)表于 2025-3-23 22:38:41 | 只看該作者
0138-1318 Overview: 978-3-322-00408-6978-3-663-11687-5Series ISSN 0138-1318
15#
發(fā)表于 2025-3-24 04:20:03 | 只看該作者
Zum Gegenstand und zur Bedeutung unendlicher Reihen,tlung ihrer Summen (im Konvergenzfall) und den Rechenoperationen mit unendlichen Reihen. Ihre Anwendungen erstrecken sich auf nahezu alle Teile der Analysis. Viele Untersuchungen werden durch Heranziehung unendlicher Reihen wesentlich vereinfacht oder überhaupt erst erm?glicht.
16#
發(fā)表于 2025-3-24 06:35:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:26:49 | 只看該作者
18#
發(fā)表于 2025-3-24 18:54:43 | 只看該作者
19#
發(fā)表于 2025-3-24 19:47:19 | 只看該作者
Fourierreihen,in kleines Stück aus dieser Lage verschoben wird, so wirkt auf ihn eine rücktreibende Kraft. H?ufig kann angenommen werden, da? sie proportional zur jeweiligen Entfernung . von der Gleichgewichtslage und zu dieser hin gerichtet ist. Nach dem Newtonschen Reaktionsprinzip besteht daher bei Vernachl?ss
20#
發(fā)表于 2025-3-25 02:46:37 | 只看該作者
Fourierintegrale, Intervall definiert sind, die man sich jedoch über dieses hinaus periodisch fortgesetzt denken kann). Im folgenden wird angedeutet, wie man durch Verallgemeinerung der Ergebnisse über Fourierreihen zu einer Darstellung einer in einem unendlichen Intervall definierten, nicht-periodischen Funktion ge
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彰化县| 洪洞县| 屯昌县| 南和县| 平乐县| 金川县| 瑞丽市| 荃湾区| 五家渠市| 克拉玛依市| 昭苏县| 广东省| 大安市| 玉林市| 高碑店市| 潼南县| 治多县| 沈丘县| 易门县| 突泉县| 义乌市| 托克逊县| 多伦县| 大渡口区| 安吉县| 玉林市| 随州市| 通道| 沅陵县| 虎林市| 锡林郭勒盟| 洛隆县| 饶阳县| 深州市| 鸡西市| 平山县| 涞水县| 泾源县| 永年县| 原平市| 彭阳县|