找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Understanding Nonlinear Dynamics; Daniel Kaplan,Leon Glass Textbook 1995 Springer Science+Business Media New York 1995 Algebra.algorithms.

[復制鏈接]
查看: 38374|回復: 37
樓主
發(fā)表于 2025-3-21 16:58:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Understanding Nonlinear Dynamics
編輯Daniel Kaplan,Leon Glass
視頻videohttp://file.papertrans.cn/942/941571/941571.mp4
叢書名稱Textbooks in Mathematical Sciences
圖書封面Titlebook: Understanding Nonlinear Dynamics;  Daniel Kaplan,Leon Glass Textbook 1995 Springer Science+Business Media New York 1995 Algebra.algorithms.
描述Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary intere
出版日期Textbook 1995
關(guān)鍵詞Algebra; algorithms; calculus; chaos; data analysis; differential equation; dynamics; fractal; fractal geome
版次1
doihttps://doi.org/10.1007/978-1-4612-0823-5
isbn_softcover978-0-387-94440-1
isbn_ebook978-1-4612-0823-5Series ISSN 1431-9381
issn_series 1431-9381
copyrightSpringer Science+Business Media New York 1995
The information of publication is updating

書目名稱Understanding Nonlinear Dynamics影響因子(影響力)




書目名稱Understanding Nonlinear Dynamics影響因子(影響力)學科排名




書目名稱Understanding Nonlinear Dynamics網(wǎng)絡(luò)公開度




書目名稱Understanding Nonlinear Dynamics網(wǎng)絡(luò)公開度學科排名




書目名稱Understanding Nonlinear Dynamics被引頻次




書目名稱Understanding Nonlinear Dynamics被引頻次學科排名




書目名稱Understanding Nonlinear Dynamics年度引用




書目名稱Understanding Nonlinear Dynamics年度引用學科排名




書目名稱Understanding Nonlinear Dynamics讀者反饋




書目名稱Understanding Nonlinear Dynamics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:58 | 只看該作者
Finite-Difference Equations,ught in the net. She repeats this ritual for several years, following up on the work of previous graduate students. The resulting measurements might look like the graph shown in Figure 1.1. The graduate student notes the variability in her measurements and wants to find out if they contain any impor
板凳
發(fā)表于 2025-3-22 01:28:39 | 只看該作者
Self-Similarity and Fractal Geometry,ulting object will be similar to the limb and to the entire tree. If you cut a twig off this branch, it too will resemble the entire tree. The term . describes the geometry of objects in which a small part when expanded looks like the whole.
地板
發(fā)表于 2025-3-22 04:59:41 | 只看該作者
5#
發(fā)表于 2025-3-22 11:33:03 | 只看該作者
Two-Dimensional Differential Equations, time increased. We know that in the real world quantities can also oscillate up and down in a regular or irregular fashion. The one-dimensional differential equations in the previous chapter, which have a single variable and a first derivative, cannot produce oscillation. In this chapter we conside
6#
發(fā)表于 2025-3-22 16:13:24 | 只看該作者
Time-Series Analysis,points, limit cycles, and chaos. The goal of applied dynamics is to relate these mathematical systems to physical or biological systems of interest. The approach we have taken so far is model building—we use our understanding of the physical system to write dynamical equations. For example, we used
7#
發(fā)表于 2025-3-22 18:28:10 | 只看該作者
8#
發(fā)表于 2025-3-23 01:05:54 | 只看該作者
9#
發(fā)表于 2025-3-23 01:28:09 | 只看該作者
10#
發(fā)表于 2025-3-23 06:58:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
容城县| 应城市| 从江县| 井研县| 哈巴河县| 湘乡市| 杭州市| 土默特右旗| 深水埗区| 新巴尔虎左旗| 眉山市| 即墨市| 香港 | 留坝县| 龙江县| 锡林浩特市| 汝南县| 上杭县| 伊宁县| 洪江市| 建宁县| 亚东县| 德兴市| 旬阳县| 桃源县| 柯坪县| 荣成市| 葵青区| 博湖县| 宜丰县| 利川市| 乐至县| 越西县| 井陉县| 香河县| 肇源县| 孟津县| 贺州市| 崇仁县| 宁海县| 连云港市|