找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Understanding Analysis and its Connections to Secondary Mathematics Teaching; Nicholas H. Wasserman,Timothy Fukawa-Connelly,Step Textbook

[復(fù)制鏈接]
樓主: Denial
21#
發(fā)表于 2025-3-25 06:31:55 | 只看該作者
22#
發(fā)表于 2025-3-25 11:30:45 | 只看該作者
23#
發(fā)表于 2025-3-25 15:44:03 | 只看該作者
24#
發(fā)表于 2025-3-25 19:41:06 | 只看該作者
Differentiability and the Secant Slope Function,York, NY: Springer (2015)) Section 5.2. It explores the formal definition of the derivative as a limit involving what we refer to as .. In the context of teaching, we draw a sharp distinction between justifications that substantiate from those that conceptually explain.
25#
發(fā)表于 2025-3-25 20:06:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:53:13 | 只看該作者
Taylor Polynomials and Modeling the Complex with the Simple,ynomials, to illustrate a principle we call “modeling the complex with the simple.” This principle relates to real analysis (what we discuss in this chapter is from Abbott’s (Understanding analysis (2nd ed.). New York, NY: Springer (2015)) Chapter 6) as well as teaching secondary school mathematics.
27#
發(fā)表于 2025-3-26 06:20:28 | 只看該作者
28#
發(fā)表于 2025-3-26 12:33:12 | 只看該作者
29#
發(fā)表于 2025-3-26 13:47:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:03:21 | 只看該作者
Equivalent Real Numbers and Infinite Decimals,., and ., the Axiom of Completeness, an introduction to ‘.’ in analysis, etc. Specifically, content similar to Abbott’s (Understanding analysis, 2nd edn. Springer, New York, NY, 2015) Chapter 1. It considers implications for the teaching of rational and real numbers in school mathematics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 张家川| 嘉定区| 拜泉县| 烟台市| 龙井市| 滨州市| 南溪县| 宁明县| 如东县| 巴林左旗| 天峻县| 宜宾市| 柘荣县| 丰台区| 叙永县| 张北县| 微山县| 合阳县| 丰镇市| 镇远县| 偏关县| 长沙市| 离岛区| 淮安市| 赣榆县| 讷河市| 塔河县| 灵山县| 玉屏| 靖江市| 农安县| 高密市| 凤庆县| 科技| 东辽县| 汪清县| 漠河县| 阜阳市| 巴青县| 页游|