找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 4th International Wo Carole H. Sudre,Christian F. Baumgartner,Will

[復(fù)制鏈接]
樓主: 請回避
31#
發(fā)表于 2025-3-26 21:35:51 | 只看該作者
Quantification of?Predictive Uncertainty via?Inference-Time Samplingeterministic network without changes to the architecture nor training procedure. Experiments on regression tasks on imaging and non-imaging input data show the method’s ability to generate diverse and multi-modal predictive distributions and how estimated uncertainty correlates with prediction error.
32#
發(fā)表于 2025-3-27 03:09:02 | 只看該作者
nnOOD: A Framework for?Benchmarking Self-supervised Anomaly Localisation Methods. By isolating the synthetic, self-supervised task from the rest of the training process we perform a more faithful comparison of the tasks, whilst also making the workflow for evaluating over a given dataset quick and easy. Using this we have implemented the current state-of-the-art tasks and evaluated them on a challenging X-ray dataset.
33#
發(fā)表于 2025-3-27 07:30:37 | 只看該作者
34#
發(fā)表于 2025-3-27 10:39:07 | 只看該作者
35#
發(fā)表于 2025-3-27 16:24:55 | 只看該作者
Stochastic Weight Perturbations Along the Hessian: A Plug-and-Play Method to Compute Uncertainty of models by sampling along the eigen directions of the Hessian of the converged minimum. We demonstrate the utility of our methods on two challenging medical ultrasound imaging problems - cardiac view recognition and kidney segmentation.
36#
發(fā)表于 2025-3-27 17:46:26 | 只看該作者
37#
發(fā)表于 2025-3-27 22:55:53 | 只看該作者
Quantification of?Predictive Uncertainty via?Inference-Time Sampling that are trained to predict uncertainty estimates as variables of interest. These approaches require distinct architectural components and training mechanisms, may include restrictive assumptions and exhibit overconfidence, i.e., high confidence in imprecise predictions. In this work, we propose a
38#
發(fā)表于 2025-3-28 05:53:37 | 只看該作者
Uncertainty Categories in?Medical Image Segmentation: A Study of?Source-Related Diversitylping build confidence with end users, and for improving the training and performance of the networks. Several different methods have been proposed to estimate uncertainties, including those from epistemic (relating to the model used) and aleatoric (relating to the data) sources using test-time drop
39#
發(fā)表于 2025-3-28 08:12:37 | 只看該作者
40#
發(fā)表于 2025-3-28 13:13:59 | 只看該作者
What Do Untargeted Adversarial Examples Reveal in?Medical Image Segmentation?tion tasks regardless of the ground truth. To explore and identify the uncertain regions, we propose a post-training method with untargeted adversarial examples where the input image is iteratively perturbed in a direction that maximizes the loss of original and perturbed prediction. The perturbed p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁南县| 荆门市| 罗田县| 黑水县| 松溪县| 宿迁市| 平远县| 克什克腾旗| 德州市| 太谷县| 湟中县| 玛纳斯县| 玉树县| 普洱| 江都市| 南昌县| 灵宝市| 广东省| 遵义县| 绥宁县| 许昌市| 根河市| 萝北县| 康保县| 城固县| 自贡市| 长沙市| 调兵山市| 西充县| 遂昌县| 台南县| 栖霞市| 天长市| 德令哈市| 平潭县| 兴仁县| 中西区| 当涂县| 凤台县| 咸宁市| 崇左市|