找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 6th International Wo Carole H. Sudre,Raghav Mehta,William M. Wells

[復(fù)制鏈接]
樓主: CHARY
11#
發(fā)表于 2025-3-23 12:28:46 | 只看該作者
12#
發(fā)表于 2025-3-23 17:47:03 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:12 | 只看該作者
Conformal Performance Range Prediction for?Segmentation Output Quality Controle techniques hold potential?for intuitive output quality control. However, such performance estimates rely on calibrated softmax outputs, which is often not?the case in modern neural networks. Moreover, the estimates do not?take into account inherent uncertainty in segmentation tasks.?These limitati
14#
發(fā)表于 2025-3-24 00:19:03 | 只看該作者
Holistic Consistency for?Subject-Level Segmentation Quality Assessment in?Medical Image Segmentationegmentation map produced by?a segmentation model, it is desired to have an automatic, accurate, and reliable method in the pipeline for segmentation quality assessment (SQA) when the ground truth is absent. In this paper,?we present a novel holistic consistency based method for assessing?at the subj
15#
發(fā)表于 2025-3-24 06:09:24 | 只看該作者
CROCODILE: Causality Aids RObustness via?COntrastive DIsentangled LEarningaper, we introduce our CROCODILE framework, showing how tools from causality can foster a model’s robustness to domain shift via feature disentanglement, contrastive learning losses, and the injection of prior knowledge. This way,?the model relies less on spurious correlations, learns the mechanism
16#
發(fā)表于 2025-3-24 10:28:54 | 只看該作者
Image-Conditioned Diffusion Models for?Medical Anomaly Detection and the original can localise arbitrary anomalies whilst also providing interpretability for an observer?by displaying what the image ‘should’ look like. All existing reconstruction-based methods have a common shortcoming; they assume that models trained on purely normal data are incapable?of repro
17#
發(fā)表于 2025-3-24 13:18:28 | 只看該作者
Information Bottleneck-Based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detectithin medical image settings, OOD data can be subtle and non-obvious to the human observer. Thus, developing highly sensitive algorithms is critical to automatically detect medical image OOD data. Previous works have demonstrated the utility of using the distance between embedded train and test feat
18#
發(fā)表于 2025-3-24 16:35:06 | 只看該作者
Beyond Heatmaps: A Comparative Analysis of?Metrics for?Anomaly Localization in?Medical Imageson this concept, un- or weakly supervised anomaly localization approaches have gained popularity.?These methods aim to model normal or healthy samples using data and?then detect deviations (i.e., abnormalities). However, as this is?an emerging field situated between image segmentation?and out-of-dis
19#
發(fā)表于 2025-3-24 19:07:33 | 只看該作者
20#
發(fā)表于 2025-3-24 23:21:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 14:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛南县| 孟津县| 宾川县| 铜陵市| 瑞安市| 峡江县| 松江区| 高雄县| 江达县| 宽甸| 石楼县| 大兴区| 泸州市| 仪陇县| 中阳县| 沈丘县| 安宁市| 新竹市| 大邑县| 兴城市| 沙坪坝区| 富顺县| 凌源市| 台江县| 岳西县| 犍为县| 米脂县| 景德镇市| 鹤岗市| 正定县| 宣城市| 侯马市| 灌南县| 抚州市| 神农架林区| 石嘴山市| 灵寿县| 清水河县| 汉寿县| 永泰县| 青铜峡市|