找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 6th International Wo Carole H. Sudre,Raghav Mehta,William M. Wells

[復制鏈接]
樓主: CHARY
11#
發(fā)表于 2025-3-23 12:28:46 | 只看該作者
12#
發(fā)表于 2025-3-23 17:47:03 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:12 | 只看該作者
Conformal Performance Range Prediction for?Segmentation Output Quality Controle techniques hold potential?for intuitive output quality control. However, such performance estimates rely on calibrated softmax outputs, which is often not?the case in modern neural networks. Moreover, the estimates do not?take into account inherent uncertainty in segmentation tasks.?These limitati
14#
發(fā)表于 2025-3-24 00:19:03 | 只看該作者
Holistic Consistency for?Subject-Level Segmentation Quality Assessment in?Medical Image Segmentationegmentation map produced by?a segmentation model, it is desired to have an automatic, accurate, and reliable method in the pipeline for segmentation quality assessment (SQA) when the ground truth is absent. In this paper,?we present a novel holistic consistency based method for assessing?at the subj
15#
發(fā)表于 2025-3-24 06:09:24 | 只看該作者
CROCODILE: Causality Aids RObustness via?COntrastive DIsentangled LEarningaper, we introduce our CROCODILE framework, showing how tools from causality can foster a model’s robustness to domain shift via feature disentanglement, contrastive learning losses, and the injection of prior knowledge. This way,?the model relies less on spurious correlations, learns the mechanism
16#
發(fā)表于 2025-3-24 10:28:54 | 只看該作者
Image-Conditioned Diffusion Models for?Medical Anomaly Detection and the original can localise arbitrary anomalies whilst also providing interpretability for an observer?by displaying what the image ‘should’ look like. All existing reconstruction-based methods have a common shortcoming; they assume that models trained on purely normal data are incapable?of repro
17#
發(fā)表于 2025-3-24 13:18:28 | 只看該作者
Information Bottleneck-Based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detectithin medical image settings, OOD data can be subtle and non-obvious to the human observer. Thus, developing highly sensitive algorithms is critical to automatically detect medical image OOD data. Previous works have demonstrated the utility of using the distance between embedded train and test feat
18#
發(fā)表于 2025-3-24 16:35:06 | 只看該作者
Beyond Heatmaps: A Comparative Analysis of?Metrics for?Anomaly Localization in?Medical Imageson this concept, un- or weakly supervised anomaly localization approaches have gained popularity.?These methods aim to model normal or healthy samples using data and?then detect deviations (i.e., abnormalities). However, as this is?an emerging field situated between image segmentation?and out-of-dis
19#
發(fā)表于 2025-3-24 19:07:33 | 只看該作者
20#
發(fā)表于 2025-3-24 23:21:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
浦城县| 那曲县| 清水县| 宣城市| 涿鹿县| 德化县| 达日县| 都兰县| 界首市| 南宫市| 晋宁县| 西乌珠穆沁旗| 苏尼特右旗| 灵寿县| 万山特区| 全州县| 淳安县| 安康市| 嘉善县| 巴塘县| 伊春市| 揭东县| 马公市| 滨海县| 洪江市| 库尔勒市| 津市市| 永登县| 通辽市| 庐江县| 耒阳市| 丹棱县| 山阳县| 栾城县| 柳河县| 岱山县| 长沙市| 宜宾县| 分宜县| 丹棱县| 金乡县|