找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unbounded Operator Algebras and Representation Theory; Konrad Schmüdgen Book 1990 Springer Basel AG 1990 Hilbert space.algebra.field.lie a

[復制鏈接]
樓主: Nixon
31#
發(fā)表于 2025-3-27 00:02:13 | 只看該作者
32#
發(fā)表于 2025-3-27 01:06:19 | 只看該作者
Integral Decompositions of *-Representations and Statesucible *-representations and to decompose a positive linear functional as an integral over pure states. Loosely speaking, for most of our results concerning these problems some nuclearity assumptions play a crucial role. We briefly explain our approach to the first problem. Let . be a *-representati
33#
發(fā)表于 2025-3-27 07:25:49 | 只看該作者
34#
發(fā)表于 2025-3-27 11:14:58 | 只看該作者
35#
發(fā)表于 2025-3-27 16:15:56 | 只看該作者
36#
發(fā)表于 2025-3-27 18:59:43 | 只看該作者
37#
發(fā)表于 2025-3-27 22:14:13 | 只看該作者
38#
發(fā)表于 2025-3-28 04:23:49 | 只看該作者
Basics of *-Representations-algebra and . preserves the involution, then . is called a *-representation of ?. Though our main intention is the study of *-representations, we need to consider also representations, since, for instance, the adjoint of a *-representation is a representation, but not a *-representation in general.
39#
發(fā)表于 2025-3-28 08:26:41 | 只看該作者
Integrable Representations of Enveloping AlgebrasLie algebra g, and let ?(g) be the universal enveloping algebra of the complexification of g. A representation of the *-algebra ?(g) is said to be . if it is equal to the infinitesimal representation d. of some unitary representation . of . When . is connected and simply connected, the .-integrable representations are called simply ..
40#
發(fā)表于 2025-3-28 11:54:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
来宾市| 惠水县| 永丰县| 伊金霍洛旗| 象山县| 临泽县| 白朗县| 若羌县| 衡阳市| 晋城| 潢川县| 南丰县| 黔南| 溧水县| 六枝特区| 临邑县| 鄂伦春自治旗| 花莲县| 金乡县| 武安市| 洛川县| 五原县| 万山特区| 昌黎县| 天门市| 三明市| 徐闻县| 应用必备| 许昌县| 那曲县| 嵊州市| 宜黄县| 林州市| 墨竹工卡县| 嵊泗县| 兴城市| 庐江县| 休宁县| 泗洪县| 桦南县| 丁青县|