找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems; Albert C. J. Luo Book 2024 The Editor(s) (if applicable) and The Author

[復制鏈接]
查看: 21606|回復: 35
樓主
發(fā)表于 2025-3-21 16:12:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems
編輯Albert C. J. Luo
視頻videohttp://file.papertrans.cn/932/931346/931346.mp4
概述?Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems.Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-s
圖書封面Titlebook: Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems;  Albert C. J. Luo Book 2024 The Editor(s) (if applicable) and The Author
描述.This book, the third of 15 related monographs,?presents systematically a theory of self-independent cubic nonlinear systems. Here, at least one vector field is self-cubic, and the other vector field can be constant, self-linear, self-quadratic, or self-cubic. For constant vector fields in this book, the dynamical systems possess 1-dimensional flows, such as source, sink and saddle flows, plus third-order source and sink flows.? For self-linear and self-cubic systems discussed,? the dynamical systems possess source, sink and saddle equilibriums, saddle-source and saddle-sink, third-order sink and source (i.e, (3rd SI:SI)-sink and (3rdSO:SO)-source) and third-order source (i.e., (3rd SO:SI)-saddle, (3rd SI, SO)-saddle) . For self-quadratic and self-cubic systems, in addition to the first and third-order sink, source and saddles plus saddle-source and saddle-sink, there are (3:2)-saddle-sink and (3:2) saddle-source and double-saddles. For the two self-cubic systems, (3:3)-source, sink and saddles exist. Finally, the author describes that homoclinic orbits without centers can be formed, and the corresponding homoclinic networks of source, sink and saddles exists.? ?..Readers will lear
出版日期Book 2024
關鍵詞Constant and crossing-cubic systems; Self-linear and crossing-cubic systems; Self-quadratic and crossi
版次1
doihttps://doi.org/10.1007/978-3-031-57112-1
isbn_softcover978-3-031-57114-5
isbn_ebook978-3-031-57112-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems影響因子(影響力)




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems影響因子(影響力)學科排名




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems網絡公開度




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems網絡公開度學科排名




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems被引頻次




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems被引頻次學科排名




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems年度引用




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems年度引用學科排名




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems讀者反饋




書目名稱Two-dimensional?Self-independent Variable?Cubic Nonlinear Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:05:42 | 只看該作者
第131346主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:28:55 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:31:58 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:51:46 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:45:41 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:02:31 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:16:06 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:14:07 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:01:26 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 16:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
富阳市| 亳州市| 镇江市| 惠州市| 太保市| 佛山市| 虞城县| 县级市| 保定市| 巨鹿县| 德兴市| 鄂托克旗| 花莲县| 旬阳县| 淳化县| 聊城市| 高阳县| 阳原县| 汉阴县| 遂宁市| 蓝山县| 桂平市| 马边| 辰溪县| 勃利县| 张家港市| 来宾市| 昔阳县| 枞阳县| 扬中市| 宁国市| 临泽县| 达州市| 彰化市| 巴中市| 无为县| 秦安县| 利川市| 石屏县| 永福县| 石棉县|