找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Two-dimensional?Product-cubic Systems, Vol.II; Product-quadratic Ve Albert C. J. Luo Book 2024 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
查看: 8747|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:32:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Two-dimensional?Product-cubic Systems, Vol.II
副標(biāo)題Product-quadratic Ve
編輯Albert C. J. Luo
視頻videohttp://file.papertrans.cn/932/931345/931345.mp4
概述Develops singularity and networks of equilibriums and 1-diemsnional flows in product-quadratic and cubic systems.Provides dynamics of product-quadratic/ product-cubic systems through equilibrium netwo
圖書封面Titlebook: Two-dimensional?Product-cubic Systems, Vol.II; Product-quadratic Ve Albert C. J. Luo Book 2024 The Editor(s) (if applicable) and The Author
描述.This book, the sixth of 15 related monographs, discusses singularity and networks of equilibriums and 1-diemsnional flows in product quadratic and cubic systems. The author explains how, in the networks, equilibriums have source, sink and saddles with counter-clockwise and clockwise centers and positive and negative saddles, and the 1-dimensional flows includes source and sink flows, parabola flows with hyperbolic and hyperbolic-secant flows. He further describes how the singular equilibriums are saddle-source (sink) and parabola-saddles for the appearing bifurcations, and the 1-dimensional singular flows are the hyperbolic-to-hyperbolic-secant flows and inflection source (sink) flows for 1-dimensional flow appearing bifurcations, and the switching bifurcations are based on the infinite-equilibriums, including inflection-source (sink), parabola-source (sink), up-down and down-up upper-saddle (lower-saddle), up-down (down-up) sink-to-source and source-to-sink, hyperbolic and hyperbolic-secant saddles. The diagonal-inflection upper-saddle and lower-saddle infinite-equilibriums are for the double switching bifurcations. The networks of hyperbolic flows with connected saddle, source a
出版日期Book 2024
關(guān)鍵詞Constant and crossing-cubic systems; Self-linear and crossing-cubic systems; Self-quadratic and crossi
版次1
doihttps://doi.org/10.1007/978-3-031-57116-9
isbn_softcover978-3-031-57118-3
isbn_ebook978-3-031-57116-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Two-dimensional?Product-cubic Systems, Vol.II影響因子(影響力)




書目名稱Two-dimensional?Product-cubic Systems, Vol.II影響因子(影響力)學(xué)科排名




書目名稱Two-dimensional?Product-cubic Systems, Vol.II網(wǎng)絡(luò)公開度




書目名稱Two-dimensional?Product-cubic Systems, Vol.II網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Two-dimensional?Product-cubic Systems, Vol.II被引頻次




書目名稱Two-dimensional?Product-cubic Systems, Vol.II被引頻次學(xué)科排名




書目名稱Two-dimensional?Product-cubic Systems, Vol.II年度引用




書目名稱Two-dimensional?Product-cubic Systems, Vol.II年度引用學(xué)科排名




書目名稱Two-dimensional?Product-cubic Systems, Vol.II讀者反饋




書目名稱Two-dimensional?Product-cubic Systems, Vol.II讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:58:48 | 只看該作者
第131345主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:49:11 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:15:35 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:21:26 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:04:53 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:06:18 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:18:47 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:02:53 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:43:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和静县| 湘潭市| 兴文县| 芜湖市| 泰顺县| 集安市| 内黄县| 临朐县| 射洪县| 北京市| 安阳市| 五峰| 马鞍山市| 遵义县| 融水| 贵德县| 沿河| 曲松县| 和平县| 壤塘县| 融水| 瑞丽市| 黄大仙区| 嘉善县| 楚雄市| 雅安市| 苗栗县| 霍邱县| 宣城市| 加查县| 泽州县| 东阳市| 九江县| 福建省| 两当县| 札达县| 云和县| 中宁县| 德昌县| 邯郸县| 景德镇市|