找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Two-Dimensional Systems; From Introduction to Abdellah Benzaouia,Abdelaziz Hmamed,Fernando Tadeo Book 2016 The Editor(s) (if applicable) an

[復制鏈接]
查看: 23923|回復: 35
樓主
發(fā)表于 2025-3-21 17:43:11 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Two-Dimensional Systems
副標題From Introduction to
編輯Abdellah Benzaouia,Abdelaziz Hmamed,Fernando Tadeo
視頻videohttp://file.papertrans.cn/932/931311/931311.mp4
概述Results can be applied to practical problems using readily available linear-matrix-inequality toolboxes.Enriches understanding of new work in multidimensional systems theory.Worked examples in each ch
叢書名稱Studies in Systems, Decision and Control
圖書封面Titlebook: Two-Dimensional Systems; From Introduction to Abdellah Benzaouia,Abdelaziz Hmamed,Fernando Tadeo Book 2016 The Editor(s) (if applicable) an
描述.A solution permitting the stabilization of 2-dimensional (2-D) continuous-time saturated system under state feedback control is presented in this book. The problems of delay and saturation are treated at the same time. The authors obtain novel results on continuous 2-D systems using the unidirectional Lyapunov function. The control synthesis and the saturation and delay conditions are presented as linear matrix inequalities. Illustrative examples are worked through to show the effectiveness of the approach and many comparisons are made with existing results. .The second half of the book moves on to consider robust stabilization and filtering of 2-D systems with particular consideration being given to 2-D fuzzy systems. Solutions for the filter-design problems are demonstrated by computer simulation. The text builds up to the development of state feedback control for 2-D Takagi–Sugeno systems with stochastic perturbation. Conservatism is reduced by using slack matrices and the coupling between the Lyapunov matrix and the system matrices is broken by using basis-dependent Lyapunov functions. Mean-square asymptotic stability and prescribed H-infinity performance are guaranteed..Two-D
出版日期Book 2016
關(guān)鍵詞Asymptotic Stability; Delayed Continuous Systems; Fornasini-Marchesini Models; H-infinity Controller De
版次1
doihttps://doi.org/10.1007/978-3-319-20116-0
isbn_softcover978-3-319-36915-0
isbn_ebook978-3-319-20116-0Series ISSN 2198-4182 Series E-ISSN 2198-4190
issn_series 2198-4182
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Two-Dimensional Systems影響因子(影響力)




書目名稱Two-Dimensional Systems影響因子(影響力)學科排名




書目名稱Two-Dimensional Systems網(wǎng)絡公開度




書目名稱Two-Dimensional Systems網(wǎng)絡公開度學科排名




書目名稱Two-Dimensional Systems被引頻次




書目名稱Two-Dimensional Systems被引頻次學科排名




書目名稱Two-Dimensional Systems年度引用




書目名稱Two-Dimensional Systems年度引用學科排名




書目名稱Two-Dimensional Systems讀者反饋




書目名稱Two-Dimensional Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:09 | 只看該作者
第131311主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:37:03 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:40:32 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:49:55 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:44:13 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:07:51 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:41:37 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:30:12 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:56:13 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
繁峙县| 芜湖市| 秦安县| 封开县| 赤峰市| 永安市| 吉林市| 凯里市| 桦川县| 濮阳县| 丰原市| 枣阳市| 尉犁县| 泽州县| 青浦区| 清河县| 邢台县| 林周县| 剑河县| 铜鼓县| 望江县| 霍林郭勒市| 绥滨县| 阿尔山市| 永寿县| 丰顺县| 深州市| 林口县| 久治县| 胶州市| 弥渡县| 靖安县| 仁怀市| 绍兴市| 河东区| 苍梧县| 华亭县| 甘德县| 黔西| 徐州市| 全南县|