找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Turnpike Conditions in Infinite Dimensional Optimal Control; Alexander J. Zaslavski Book 2019 Springer Nature Switzerland AG 2019 infinite

[復(fù)制鏈接]
查看: 14050|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:40:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control
編輯Alexander J. Zaslavski
視頻videohttp://file.papertrans.cn/932/931131/931131.mp4
概述Numerous illustrative examples support the material for the broad spectrum of experts.Presents new approaches, techniques, and methods to handle problems in infinite dimensional optimal control.Clarif
叢書名稱Springer Optimization and Its Applications
圖書封面Titlebook: Turnpike Conditions in Infinite Dimensional Optimal Control;  Alexander J. Zaslavski Book 2019 Springer Nature Switzerland AG 2019 infinite
描述.This book provides a comprehensive study of turnpike phenomenon arising in optimal control theory. The focus is on individual (non-generic) turnpike results which are both mathematically significant and have numerous applications in engineering and economic theory. All results obtained in the book are new. New approaches, techniques, and methods are rigorously presented and utilize research from finite-dimensional variational problems and discrete-time optimal control problems to find the necessary conditions for the turnpike phenomenon in infinite dimensional spaces. ?. The semigroup approach is employed in the discussion as well as PDE descriptions of continuous-time dynamics. The main results on sufficient and necessary conditions for the turnpike property are completely proved and the numerous illustrative examples support the material for the broad spectrum of experts. Mathematicians interested in the calculus of variations, optimal control and in applied functional analysis will find this book a useful guide to the turnpike phenomenon in infinite dimensional spaces.? Experts in economic and engineering modeling as well as graduate students will also benefit from the develope
出版日期Book 2019
關(guān)鍵詞infinite dimensional optimal control; turnpike phenomenon; discrete-time optimal control problems; cont
版次1
doihttps://doi.org/10.1007/978-3-030-20178-4
isbn_softcover978-3-030-20180-7
isbn_ebook978-3-030-20178-4Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control影響因子(影響力)




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control影響因子(影響力)學(xué)科排名




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control網(wǎng)絡(luò)公開度




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control被引頻次




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control被引頻次學(xué)科排名




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control年度引用




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control年度引用學(xué)科排名




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control讀者反饋




書目名稱Turnpike Conditions in Infinite Dimensional Optimal Control讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:48 | 只看該作者
第131131主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:45:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:27:23 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:06:18 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:17:28 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:10:34 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:22:02 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:20:01 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:54:44 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井陉县| 三门峡市| 根河市| 海南省| 南平市| 平塘县| 旬阳县| 河南省| 石家庄市| 石河子市| 伊春市| 河曲县| 松潘县| 永定县| 吴川市| 安国市| 株洲市| 彭阳县| 牡丹江市| 建始县| 嘉黎县| 昌黎县| 永丰县| 宜城市| 广州市| 通江县| 尼勒克县| 阜新市| 汾西县| 隆德县| 茶陵县| 巴林右旗| 财经| 黎平县| 贵溪市| 叶城县| 古田县| 龙川县| 娱乐| 平和县| 渝北区|