找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Triangulated Categories of Mixed Motives; Denis-Charles Cisinski,Frédéric Déglise Book 2019 Springer Nature Switzerland AG 2019 mixed moti

[復(fù)制鏈接]
查看: 42577|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:00:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Triangulated Categories of Mixed Motives
編輯Denis-Charles Cisinski,Frédéric Déglise
視頻videohttp://file.papertrans.cn/931/930173/930173.mp4
概述Provides a complete theory of triangulated rational mixed motives satisfying Grothendieck’s six operations, including the state of the art for integral coefficients.Gives a systematic, self-contained,
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Triangulated Categories of Mixed Motives;  Denis-Charles Cisinski,Frédéric Déglise Book 2019 Springer Nature Switzerland AG 2019 mixed moti
描述The primary aim of this monograph is to achieve part of Beilinson’s program on mixed motives using Voevodsky’s theories of .A.1.-homotopy and motivic complexes. .Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson’s program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky’s entire work and Grothendieck’s SGA4, our main sources are Gabber’s work on étale cohomology and Ayoub’s solution to Voevodsky’s cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky...Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck’ six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison
出版日期Book 2019
關(guān)鍵詞mixed motives; motivic cohomology; six functors; cohomological descent; Grothendieck-Verdier duality; mot
版次1
doihttps://doi.org/10.1007/978-3-030-33242-6
isbn_softcover978-3-030-33244-0
isbn_ebook978-3-030-33242-6Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Triangulated Categories of Mixed Motives影響因子(影響力)




書目名稱Triangulated Categories of Mixed Motives影響因子(影響力)學(xué)科排名




書目名稱Triangulated Categories of Mixed Motives網(wǎng)絡(luò)公開度




書目名稱Triangulated Categories of Mixed Motives網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Triangulated Categories of Mixed Motives被引頻次




書目名稱Triangulated Categories of Mixed Motives被引頻次學(xué)科排名




書目名稱Triangulated Categories of Mixed Motives年度引用




書目名稱Triangulated Categories of Mixed Motives年度引用學(xué)科排名




書目名稱Triangulated Categories of Mixed Motives讀者反饋




書目名稱Triangulated Categories of Mixed Motives讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:31 | 只看該作者
第130173主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:29:40 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:50:12 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:05:29 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:52:30 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:30:08 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:36:58 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:14:35 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:10:03 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳信县| 怀集县| 梁山县| 巩留县| 新竹市| 大庆市| 澳门| 海安县| 古浪县| 达日县| 惠来县| 云南省| 潜山县| 保靖县| 宜春市| 宁安市| 德庆县| 寻甸| 翁源县| 十堰市| 郁南县| 海淀区| 大姚县| 赤壁市| 高邮市| 汉川市| 新龙县| 如东县| 滕州市| 东乡族自治县| 张家港市| 揭西县| 晋州市| 如东县| 海宁市| 九龙县| 三台县| 喀什市| 丹寨县| 毕节市| 镇安县|