找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Transparency and Interpretability for Learned Representations of Artificial Neural Networks; Richard Meyes Book 2022 The Editor(s) (if app

[復(fù)制鏈接]
查看: 28095|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:06:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks
編輯Richard Meyes
視頻videohttp://file.papertrans.cn/930/929188/929188.mp4
圖書封面Titlebook: Transparency and Interpretability for Learned Representations of Artificial Neural Networks;  Richard Meyes Book 2022 The Editor(s) (if app
描述.Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI’s decision-making remain unanswered. Thus, a young research field coined with the general term .Explainable AI. (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed lighton how to adopt an empirical neuroscience inspired approach to investigate a neural network’s learned representation in the same spirit as neuroscientific studies of the brain..
出版日期Book 2022
關(guān)鍵詞Transparency; Interpretability; Explainability; Learned Representation; XAI; Explainable AI; Artificial Ne
版次1
doihttps://doi.org/10.1007/978-3-658-40004-0
isbn_softcover978-3-658-40003-3
isbn_ebook978-3-658-40004-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks影響因子(影響力)




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks網(wǎng)絡(luò)公開(kāi)度




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks被引頻次




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks被引頻次學(xué)科排名




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks年度引用




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks年度引用學(xué)科排名




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks讀者反饋




書目名稱Transparency and Interpretability for Learned Representations of Artificial Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:13 | 只看該作者
第129188主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:09:26 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:29:15 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:05:10 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:13:51 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:37:20 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:52:41 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:33:33 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:30:59 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南城县| 囊谦县| 廉江市| 商丘市| 平顶山市| 邹城市| 伊春市| 河西区| 巩留县| 安吉县| 大新县| 渭源县| 兰州市| 建宁县| 大田县| 嘉兴市| 绥棱县| 阳高县| 辽宁省| 卢龙县| 二连浩特市| 汾阳市| 平陆县| 澄江县| 虞城县| 南投县| 宜宾市| 武鸣县| 新余市| 宾川县| 宁海县| 临澧县| 抚松县| 定日县| 遂平县| 平罗县| 江源县| 汤原县| 隆回县| 永丰县| 昆山市|