找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains; Mikhail Borsuk Book 20101st edition The Editor(s) (if app

[復制鏈接]
查看: 51441|回復: 35
樓主
發(fā)表于 2025-3-21 17:15:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains
編輯Mikhail Borsuk
視頻videohttp://file.papertrans.cn/930/929004/929004.mp4
概述Estimates of weak solutions to the transmission problem for linear elliptic equations with minimal smooth coefficients in n-dimensional conic domains.Investigation of weak solutions for general diverg
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains;  Mikhail Borsuk Book 20101st edition The Editor(s) (if app
描述The goal of this book is to investigate the behavior of weak solutions of the elliptic transmission problem in a neighborhood of boundary singularities: angular and conic points or edges. This problem is discussed for both linear and quasilinear equations. A principal new feature of this book is the consideration of our estimates of weak solutions of the transmission problem for linear elliptic equations with minimal smooth coeciffients in n-dimensional conic domains. Only few works are devoted to the transmission problem for quasilinear elliptic equations. Therefore, we investigate the weak solutions for general divergence quasilinear elliptic second-order equations in n-dimensional conic domains or in domains with edges.The basis of the present work is the method of integro-differential inequalities. Such inequalities with exact estimating constants allow us to establish possible or best possible estimates of solutions to boundary value problems for elliptic equations near singularities on the boundary. A new Friedrichs–Wirtinger type inequality is proved and applied to the investigation of the behavior of weak solutions of the transmission problem.All results are given with comp
出版日期Book 20101st edition
關鍵詞Boundary value problem; Eigenvalue; Laplace operator; elliptic equation; quasi-linear equation; transmiss
版次1
doihttps://doi.org/10.1007/978-3-0346-0477-2
isbn_ebook978-3-0346-0477-2Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains影響因子(影響力)




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains影響因子(影響力)學科排名




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains網(wǎng)絡公開度




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains網(wǎng)絡公開度學科排名




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains被引頻次




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains被引頻次學科排名




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains年度引用




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains年度引用學科排名




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains讀者反饋




書目名稱Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:15:45 | 只看該作者
第129004主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:48:28 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:07:42 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:52:59 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:23:34 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:38:02 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:58:53 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:01:39 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:23:35 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
行唐县| 喀什市| 宝鸡市| 泸西县| 横山县| 阿拉善盟| 朝阳县| 灵川县| 新民市| 通榆县| 城口县| 鞍山市| 沽源县| 阿勒泰市| 阳山县| 巴彦县| 禄丰县| 收藏| 济南市| 乌鲁木齐县| 辉县市| 札达县| 肥城市| 合作市| 昌平区| 汝南县| 惠水县| 双辽市| 方城县| 威远县| 丽江市| 北京市| 攀枝花市| 永德县| 郑州市| 会东县| 新密市| 绥中县| 麦盖提县| 兰西县| 凌源市|