找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Transforming Domain into Boundary Integrals in BEM; A Generalized Approa Weifeng Tang Book 1988 Springer-Verlag Berlin, Heidelberg 1988 cal

[復(fù)制鏈接]
查看: 6866|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:07:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Transforming Domain into Boundary Integrals in BEM
副標題A Generalized Approa
編輯Weifeng Tang
視頻videohttp://file.papertrans.cn/929/928457/928457.mp4
叢書名稱Lecture Notes in Engineering
圖書封面Titlebook: Transforming Domain into Boundary Integrals in BEM; A Generalized Approa Weifeng Tang Book 1988 Springer-Verlag Berlin, Heidelberg 1988 cal
描述CHAPTER 1 1-1 NUMERICAL METHODS For the last two or three decades, scientists and engineers have used numerical methods as an important tool in many different areas. This significant fact has its inexorable historical trend and it is the inevitable outcome of the recent developments in science, technology and industry. Analytical methods have been developed for a long period and have produced a great amount of successful results, but they failed to solve most practical engineering problems with complicated boundary conditions or irregular geometry. It is also very difficult to solve non-linear or time-dependent problems using analytical approaches, even if they are very simple. On the other hand, research on analytical methods has provided a solid foundation for different types of numerical methods. Because of the rapid developments of science and technology it is now necessary to solve complicated problems using more efficient and accurate approaches than before. Not only problems with complicated boundary conditions or irregular configurations require solutions but also non-linear or time-dependent problems must be solved. Computer hardware and software have developed at an unexp
出版日期Book 1988
關(guān)鍵詞calculus; geometry; mechanics; numerical analysis; numerical methods; plasticity; programming; transformati
版次1
doihttps://doi.org/10.1007/978-3-642-83465-3
isbn_softcover978-3-540-19217-6
isbn_ebook978-3-642-83465-3Series ISSN 0176-5035
issn_series 0176-5035
copyrightSpringer-Verlag Berlin, Heidelberg 1988
The information of publication is updating

書目名稱Transforming Domain into Boundary Integrals in BEM影響因子(影響力)




書目名稱Transforming Domain into Boundary Integrals in BEM影響因子(影響力)學(xué)科排名




書目名稱Transforming Domain into Boundary Integrals in BEM網(wǎng)絡(luò)公開度




書目名稱Transforming Domain into Boundary Integrals in BEM網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Transforming Domain into Boundary Integrals in BEM被引頻次




書目名稱Transforming Domain into Boundary Integrals in BEM被引頻次學(xué)科排名




書目名稱Transforming Domain into Boundary Integrals in BEM年度引用




書目名稱Transforming Domain into Boundary Integrals in BEM年度引用學(xué)科排名




書目名稱Transforming Domain into Boundary Integrals in BEM讀者反饋




書目名稱Transforming Domain into Boundary Integrals in BEM讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:48:03 | 只看該作者
第128457主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:24:39 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:51:42 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:21:10 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:45:33 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:46:50 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:11:22 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:43:08 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:10:13 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇原县| 东山县| 河津市| 行唐县| 永济市| 永登县| 揭阳市| 富源县| 合阳县| 晴隆县| 夏邑县| 望城县| 荣成市| 城固县| 富蕴县| 庆城县| 铜陵市| 沈阳市| 永吉县| 大荔县| 梅州市| 舞钢市| 辽宁省| 鄯善县| 民权县| 自贡市| 佳木斯市| 灵璧县| 鲜城| 六盘水市| 峨眉山市| 贡嘎县| 襄城县| 屯昌县| 邵武市| 德保县| 姜堰市| 建昌县| 宜城市| 桂平市| 乐亭县|